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18.1 General Purpose and Description

Time-series analysis is used when observations are made repeatedly over 50 or more time periods.
Sometimes the observations are from a single case, but more often they are aggregate scores from
many cases. For example, the scores might represent the daily number of temper tantrums of a two-
year-old, the weekly output of a manufacturing plant, the monthly number of traffic tickets issued in
a municipality, or the yearly GNP for a developing country, all of these tracked over considerable
time. One goal of the analysis is to identify patterns in the sequence of numbers over time, which are
correlated with themselves, but offset in time. Another goal in many research applications is to test
the impact of one or more interventions (IVs). Time-series analysis is also used to forecast future pat-
terns of events or to compare series of different kinds of events.

As in other regression analyses, a score is decomposed into several potential elements. One of
the elements is a random process, called a shock. Shocks are similar to the error terms in other analy-
ses. Overlaying this random element are numerous potential patterns. One potential pattern is trends
over time: linear (where the mean is steadily increasing or decreasing over time), quadratic (where
the mean first increases and then decreases over time, or the reverse), or something more compli-
cated. A second potential pattern is lingering effects of earlier scores, and a third potential pattern is
lingering effects of earlier shocks. These patterns are not mutually exclusive; two or all three can be
superimposed on the random process.

The model described in this chapter is auto-regressive, integrated, moving average, called an
ARIMA (p, d, q) model. The auto-regressive element, p, represents the lingering effects of preced-
ing scores. The integrated element, d, represents trends in the data, and the moving average element,
q, represents the lingering effects of preceding random shocks. A big question is how lingering is lin-
gering? That is, do you have to take into account just the previous score (or shock) or do you get a
better model if you take into account two or more of the previous scores (or shocks)?

The first three steps in the analysis, identification, estimation, and diagnosis, are devoted to
modeling the patterns in the data. The first step is identification in which autocorrelation functions
(ACFs) and partial autocorrelation functions (PACFs) are examined to see which of the potential
three patterns are present in the data. Autocorrelations are self-correlations of the series of scores
with itself, removed one or more periods in time; partial autocorrelations are self-correlations with



intermediate autocorrelations partialed out. Various auto-regressive and moving average patterns
leave distinctive footprints on the autocorrelation and partial autocorrelation functions.

When the time series is long, there are also tendencies for measures to vary periodically, called
seasonality, periodicity, or cyclic in time-series jargon. For example, viral infections peak during the
winter months, as do calories and alcohol consumed. Thus, seasonality is another form of autocorre-
lation frequently seen in data sets. Periodic variation occurs over shorter time periods as well. For
example, quality of manufacturing differs over days of the week, peaking in mid-week. And calorie
and alcohol consumption also increase over the weekend. These patterns are also identified using
ACFs and PACFs and accounted for in the model.

Time-series analysis is more appropriate for data with autocorrelation than, say, multiple regres-
sion, for two reasons. The first is that there is explicit violation of the assumption of independence of
errors. The errors are correlated due to the patterns over time in the data. Type I error rate is substan-
tially increased if regression is used when there is autocorrelation. The second is that the patterns may
either obscure or spuriously enhance the effect of an intervention unless accounted for in the model.

The second step in modeling the series is estimation in which the estimated size of a linger-
ing auto-regressive or moving average effect is tested against the null hypothesis that it is zero. The
third step is diagnosis, in which residual scores are examined to determine if there are still patterns
in the data that are not accounted for. Residual scores are the differences between the scores predicted
by the model and the actual scores for the series. If all patterns are accounted for in the model, the
residuals are random. In many applications of time series, identifying and modeling the patterns in the
data are sufficient to produce an equation, which is then used to predict the future of the process. This
is called forecasting, the goal of many applications of time series in the economic arena.

However, often the goal is to assess the impact of an intervention. The intervention is occa-
sionally experimental, featuring random assignment of cases to levels of treatment, control of other
variables, and manipulation of the levels of the IV by the researcher. However, true experiments typ-
ically assess the DV far fewer than 50 times and therefore cannot use time-series analysis. More
likely with experiments, there is a single measure before the intervention (a pretest) and, perhaps, a
few measures after the intervention to assess immediate and follow-up effects. In this situation,
repeated measures ANOVA is more appropriate as long as heterogeneity of covariance (sphericity)
is taken into account, as discussed in Chapter 8, or MLM if complications arise (cf. Chapter 15).

In time series, the intervention is more likely to be either naturally occurring or quasi-
experimental. With naturally occurring interventions, such as an assassination or a natural disaster,
“nature” manipulates the timing and delivery of the intervention. In quasi-experiments, the timing and
delivery of the intervention are under the control of the researcher, but there is often insufficient con-
trol of extraneous variables, including cases, to consider the study a true experiment. Similarly, there
is often no control group with cases randomly assigned. For example, a profit-sharing plan is intro-
duced to employees at a single company at a specific time and quality of computers produced is com-
pared before and after the plan. Numerous observations of the quality of the product are made both
before and after the introduction of the profit-sharing plan. It is better if the time for introduction of
the plan is randomly chosen from among the population of possible times.

An intervention is tested for significance in the traditional manner, once the endogenous pat-
terns in the data have been reduced to error through modeling. The effects of interventions consid-
ered in this chapter vary in both onset and duration; the onset of the effect may be abrupt or gradual
and the duration of the effect may be either permanent or temporary. Effects of interventions are
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superimposed on the other patterns in the data. There are numerous other possible types of inter-
ventions and tests for them, as discussed in McCleary and Hay (1980) and McDowall, McCleary,
Meidinger, and Hay (1980), but beyond the scope of this book.

There may be more than a single intervention. For example, a profit-sharing plan is imple-
mented at one point, and a child-care program implemented at another point in time. Or, the same
intervention might be implemented and withdrawn at different time points. For example, background
music is introduced into the assembly room for some time period, withdrawn for another time
period, reintroduced, withdrawn again, and so forth, in the typical ABAB reversal pattern. There
might also be a covariate measured at all time periods along with the DV. For example, temperature
inside the plant is measured along with product quality, both before and after implementation of the
profit-sharing program. The trick is to find a covariate that is not affected by the intervention. Or,
additional DVs might be measured, creating a multivariate time-series analysis. For example, pro-
ductivity might be assessed as well as quality.

Nunn (1993) investigated the impact of putting a mobile digital terminal, which allows patrol
officers to communicate directly with remote crime information databases, into police vehicles. DVs
were theft recoveries and clearance rates over a ten-year period from January 1980 to January 1990.
The terminals were installed from March 1985 through January 1986. There was little evidence that
the intervention affected auto-theft clearances. Recoveries did not directly show the effect of the inter-
vention (i.e., did not increase significantly), but the trend changed after intervention, reflecting a
greater number of auto thefts nationwide. Nunn suggests that the mobile digital terminal may have
helped police hold the line against a rapid drop in percentage of recoveries expected with the greater
number of thefts; they were able to continue to recover a constant percentage of stolen vehicles.

Lin and Crawford (1983) compared yearly mortality patterns in three communities from 1890
to 1967. They found that populations that were closer geographically showed remarkable similarities
in mortality patterns. They also found evidence to suggest that mortality patterns began cycling due to
pandemic diseases at the turn of the twentieth century with greater communication and transportation,
but patterns again became distinctive later in the century with advances in medical technology.

Time-series analysis has its own unique jargon and sometimes uses familiar terms in ways that
are different from uses in other statistical techniques. Table 18.1 defines some time-series terms as
they are used in this chapter. Many of the terms are defined algebraically in Section 18.4.

This chapter provides only a simplified overview of the complicated data analysis strategy that
is time-series analysis. A recent update of the classic reference for time series analysis is available
(Box, Jenkins, & Reinsel, 1994), supplying a comprehensive treatment of the topic. Another recent
resource for more advanced applications is provided by Hershberger, Molenaar, and Corneal (1996).

18.2 Kinds of Research Questions

The major research questions involve the patterns in the series, the predicted value of the scores in
the near future, and the effect of an intervention (an IV). Less common questions address the rela-
tionships among time series. It should be understood that this chapter barely scratches the surface of
the complex world of time-series analysis. Only those questions that are relatively easily addressed
in SPSS and SAS are discussed.
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TABLE 18.1 Some Time-Series Terminology

Term

Observation

Random shock

ARIMA 
(p, d, q)

Auto-regressive
terms (p)

Moving average
terms (q)

Lag

Differencing

Stationary and
nonstationary
series

Trend terms (d)

Autocorrelation

Autocorrelation
function (ACF)

Partial
autocorrelation
function (PACF)

Definition

The DV score at one time period. The score can be from a single case or an aggregate
score from numerous cases.

The random component of a time series. The shocks are reflected by the residuals (or
errors) after an adequate model is identified.

The acronym for an auto-regressive integrated moving average model. The three
terms to be estimated in the model are auto-regressive (p), integrated (trend—d), and
moving average (q).

The number of terms in the model that describe the dependency among successive
observations. Each term has an associated correlation coefficient that describes the mag-
nitude of the dependency. For example, a model with two auto-regressive terms (p C 2)
is one in which an observation depends on (is predicted by) two previous observations.

The number of terms that describe the persistence of a random shock from one obser-
vation to the next. A model with two moving average terms (q C 2) is one in which an
observation depends on two preceding random shocks.

The time periods between two observations. For example, lag 1 is between Yt and Yt>1.
Lag 2 is between Yt and Yt>2. Time series can also be lagged forward, Yt and Yt=1.

Calculating differences among pairs of observations at some lag to make a nonstation-
ary series stationary.

Stationary series vary around a constant mean level, neither decreasing nor increasing
systematically over time, with constant variance. Nonstationary series have systematic
trends, such as linear, quadratic, and so on. A nonstationary series that can be made
stationary by differencing is called “nonstationary in the homogenous sense.”

The terms needed to make a nonstationary time series stationary. A model with two
trend terms (d C 2) has to be differenced twice to make it stationary. The first difference
removes linear trend, the second difference removes quadratic trend, and so on.

Correlations among sequential scores at different lags. The lag 1 autocorrelation coef-
ficient is similar to correlation between the pairs of scores at adjacent points in time,
rYt,Yt>1 (e.g., the pair at time 1 and time 2, the pair at time 2 and time 3, and so on).
The lag 2 autocorrelation coefficient is similar to correlation between the pairs of
scores two time periods apart, rYt,Yt>2 (e.g., the pair at time 1 and time 3, the pair at
time 2 and time 4, and so on).

The pattern of autocorrelations in a time series at numerous lags; the correlation at lag
1, then the correlation at lag 2, and so on.

The pattern of partial autocorrelations in a time series at numerous lags after partial-
ing out the effects of autocorrelations at intervening lags.



18.2.1 Pattern of Autocorrelation

The pattern of autocorrelation is modeled in any time-series study, for itself, in preparation for fore-
casting, or prior to tests of an intervention. Are there linear or quadratic trends in the data? Does the
previous score affect the current one? The previous random shock? How quickly do autocorrelations
die out over time? For the example, is the quality of the computer increasing steadily over the time
frame? Decreasing? Is the quality of the computer produced in one time frame associated with the
quality in the next time frame? How long do the random shocks in the manufacturing processes
linger? Section 18.4.1.5 shows how the autocorrelation functions (ACFs) and partial autocorrelation
functions (PACFs) are examined to reveal these patterns.

18.2.2 Seasonal Cycles and Trends

Time-series data are also examined for seasonal cycles if such are possible. Are there weekly, quar-
terly, monthly, or yearly trends in the data? For example, does the quality of the computers produced
vary systematically over the days of the week? The weeks of a month? As for auto-regressive and
moving average components, ACFs and PACFs are examined to reveal seasonal cycles, as demon-
strated in Section 18.5.1.

18.2.3 Forecasting

Based on the known patterns in the data, what is the predicted value of observations in the near
future? For example, based on previous patterns in the data, is the quality of the computers likely to
increase in the next month? Decrease? Forecasting is a major enterprise in business and economics.
It is discussed briefly in Section 18.6.3.

18.2.4 Effect of an Intervention

Has an intervention had an impact, after taking into account patterns in the scores associated with
trends, auto-regression, moving averages, and periodicity? For example, is there a difference in qual-
ity of computers after introduction of a profit-sharing plan? Intervention is added to a model as an
IV. Sections 18.5.2 and 18.7.4 demonstrate tests of intervention in time-series analysis.

Procedures also are available for determining the onset and duration of the effects of an inter-
vention—whether they are abrupt or gradual, permanent or temporary. These are discussed in Sec-
tion 18.5.2 and also in McCleary and Hay (1980) and McDowall et al. (1980), among others.

18.2.5 Comparing Time Series

Are the patterns over time similar for different variables or populations? For example, do income and
consumer prices follow the same time series? Do different populations have the same patterns of
mortality? That is, what are the relationships among two or more time series? This often is referred
to as multivariate time series; terms also used are cross-correlation functions, transfer function mod-
els, models with input series, and dynamic regression. These models are similar to intervention mod-
els in that an IV (in this case a continuous IV) is added to a model. These models are discussed by
McCleary and Hay (1980) and Cromwell, Hannan, Labys, and Terraza (1994). They also are dis-
cussed in the on-disk SAS/ETS User’s Guide, with an example shown (Example 11.3). Section
18.5.3 discusses time-series analysis with more than one continuous variable.

Time-Series Analysis 18-5



18.2.6 Time Series with Covariates

Covariates (often called predictors in time-series jargon) may be measured along with the DV. A first
question is: Is the covariate related to the DV, after adjusting both for autocorrelation and periodic-
ity? For example, is the temperature in the manufacturing plant related to product quality? If the
answer is positive, then including the covariate in the model may enhance the test of the intervention.
Section 18.5.3 discusses models with covariates.

18.2.7 Effect Size and Power

How much of the variability in observations is due to the chosen model? Section 18.6.2 shows two
effect size measures used in time-series analysis. Power depends on the accuracy of ARIMA model-
ing, as well as on the number of observations over time and the impact of the intervention.

18.3 Assumptions of Time-Series Analysis

18.3.1 Theoretical Issues

The usual cautions apply with regard to causal inference in time-series analysis. Only with random
assignment to treatment conditions, control of extraneous variables, and manipulation of the inter-
vention(s) can cause reasonably be inferred when differences associated with an intervention are
observed. Quasi-experiments are designed to rule out as many alternative sources of influence on the
DV as possible, but causal inference is much weaker in any design that falls short of the requirements
of a true experiment.

18.3.2 Practical Issues

The random shocks that perturb the system are considered to be independent and normally distributed
with mean zero and constant variance over time. Contingencies among scores over time are part of the
model that is developed during identification and estimation. If the model is good, all sequential con-
tingencies are removed so that you are left with the randomly distributed shocks. The residuals, then,
are a reflection of the random shocks: independent and normally distributed, with mean zero and
homogeneity of variance. It is expressly assumed that there are correlations in the sequence of obser-
vations over time that have been adequately modeled. This assumption is tested during the diagnostic
phase when remaining, as yet unaccounted for patterns are sought among the residuals. Outliers
among scores are sought before modeling and among the residuals once the model is developed.

18.3.2.1 Normality of Distributions of Residuals

A model is developed and then normality of residuals is evaluated in time-series analysis. Examine
the normalized plot of residuals for the model before evaluating an intervention. Transform the DV
if residuals are nonnormal. The normalized plot of residuals is examined as part of the diagnostic
phase of modeling, as discussed in Section 18.4.3 and demonstrated in Section 18.7.3. The usual
square root, logarithmic, or inverse transformations are appropriate in the event of nonnormally dis-
tributed residuals.
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18.3.2.2 Homogeneity of Variance and Zero Mean of Residuals

After the model is developed, examine plots of standardized residuals versus predicted values to
assess homogeneity of variance over time. Consider transforming the DV if the width of the plot
varies over the predicted values. McCleary and Hay (1980) recommend a logarithmic transforma-
tion to remedy heterogeneity of variance.

18.3.2.3 Independence of Residuals

During the diagnostic phase, once the model is developed and residuals are computed, there should be
no remaining autocorrelations or partial autocorrelations at various lags in the ACFs and PACFs.
Remaining autocorrelations at various lags signal other possible patterns in the data that have not been
properly modeled. Examine the ACFs and PACFs for other patterns and adjust the model accordingly.

18.3.2.4 Absence of Outliers

Outliers are observations that are highly inconsistent with the remainder of the time-series data. They
can greatly affect the results of the analysis and must be dealt with. They sometimes show up in
the original plot of the DV against time, but are often more noticeable after initial modeling is com-
plete. Examine the time-series plot before and after adjusting for autocorrelation and seasonality to
identify obvious outliers. Unfortunately, there are no concrete guidelines to determine how discrepant
a case must be to be labeled an outlier in a time-series analysis (Cryer, 1986, p. 250). An outlier is dealt
with in the usual manner by checking the original data for errors, deleting the observation, replacing
the observation with an imputed value, and so on. Section 18.7.1 demonstrates a search for outliers.

Outliers also may be sought in the solution. SAS ARIMA has a procedure to detect changes in
the level of the response series that are not accounted for by the model. This also is demonstrated in
Section 18.7.1.

18.4 Fundamental Equations for Time-Series
ARIMA Models

Like most multivariate procedures, time-series analysis is done by computer, not by hand. Many of
the computations are not difficult so much as extremely tedious if done by hand. Full and partial
autocorrelations between pairs of scores at 25 to 30 different lags? Therefore, the emphasis in this
section is on conceptual understanding rather than processing of a data set.

Several texts are devoted to time-series analysis, some of them highly mathematical. The pri-
mary reference for ARIMA models—the ones addressed in this chapter—is Box, Jenkins, and Rein-
sel  (1994). Two texts that demonstrate at least some of the equations with numbers are Glass,
Wilson, and Gottman (1975) and McDowall et al. (1980). A few less mathematical, more computer-
oriented sources are Cryer (1986); McCleary and Hay (1980); and McCain and McCleary (1979).
The notation from the latter two sources has been adapted for this section.

Observations are made repeatedly through the duration of a study. It is the order of the obser-
vations that is important. If there is an intervention, many observations are made before it and many
after. For this small-sample example, computer quality is measured weekly for 20 weeks on a scale
where higher numbers indicate higher quality. The observations appear in Table 18.2. You may think
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of the observations as coming from assessment of a single randomly selected computer or as the
average assessment of several randomly selected computers each week. Note that twenty observa-
tions are inadequate for a normal time-series analysis.

18.4.1 Identification of ARIMA ( p, d, q) Models

The ARIMA (auto-regressive, integrated, moving average) model of a time series is defined by three
terms (p, d, q). Identification of a time series is the process of finding integer, usually very small
(e.g., 0, 1, or 2), values of p, d, and q that model the patterns in the data. When the value is 0, the ele-
ment is not needed in the model. The middle element, d, is investigated before p and q. The goal is
to determine if the process is stationary and, if not, to make it stationary before determining the val-
ues of p and q. Recall that a stationary process has a constant mean and variance over the time period
of the study.

18.4.1.1 Trend Components, d: Making the Process Stationary

The first step in the analysis is to plot the sequence of scores over weeks as seen in Figure 18.1, pro-
duced in the SPSS Windows menus by selecting Graphs, and then Sequence. The two relevant fea-
tures of the plot are central tendency and dispersion. Is the mean apparently shifting over the time
period? Is the dispersion increasing or decreasing over the time period?
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TABLE 18.2
Observations of
Computer Quality
over 20 Weeks

Week

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Quality

19
21
17
19
20
21
27
28
20
24
31
20
29
21
28
28
29
31
23
34



There are possible shifts in both the mean and the dispersion over time for this series. The
mean may be edging upwards, and the variability may be increasing. If the mean is changing, the
trend is removed by differencing once or twice. If the variability is changing, the process may be
made stationary by logarithmic transformation.

Differencing the scores is the easiest way to make a nonstationary mean stationary (flat). The
number of times you have to difference the scores to make the process stationary determines the
value of d. If d C 0, the model is already stationary and has no trend. When the series is differenced
once, d C 1 and linear trend is removed. When the difference is then differenced, d C 2 and both lin-
ear and quadratic trend are removed. For nonstationary series, d values of 1 or 2 are usually adequate
to make the mean stationary.

Differencing simply means subtracting the value of an earlier observation from the value of a
later observation. The first value in Table 18.2, for example, is 19, and the second value is 21. Thus
the lag 1 difference is 2.1 Table 18.3 shows all of the lag 1 first differences in the column labeled
qual_1. These differences represent the changes in quality over the 20-week period. Notice that there
are only 19 lag 1 first differences for this 20-week series. Table 18.3 also contains the second differ-
ence, qual_2; this is the difference of the first difference with both linear and quadratic trend
removed, if present. There are 18 lag 1 second differences in this example.
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FIGURE 18.1 Plot of quality by week for the data of Table 18.2. 
SPSS TSPLOT syntax and output.
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1Lags of other lengths may be required when adjusting for seasonality, as discussed in Section 18.5.1.



In the simplest time series, an observation at a time period simply reflects the random shock at
that time period, at , that is:

Yt C at (18.1)

The random shocks are independent with constant mean and variance, and so are the observations. If
there is trend in the data, however, the score also reflects that trend as represented by the slope of the
process. In this slightly more complex model, the observation at the current time, Yt , depends on the
value of the previous observation, Yt>1, the slope, and the random shock at the current time period:

Yt C T0 (Yt>1) = at (18.2)

That mean of the first difference, qual_1, is the slope of the linear trend in the series, in this
example .79. For the example:

Yt C .79(Yt>1) = at

To see if the process is stationary after linear trend is removed, the first difference scores at lag
1 are plotted against weeks, as seen in Figure 18.2. If the process is now stationary, the line will be
basically horizontal with constant variance.
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TABLE 18.3 Lag 1 and Lag 2 Differences for the 
Data of Table 18.2

week

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

qual_1

.
21 > 19 C 2
17 > 21 C >4
19 > 17 C 2
20 > 19 C 1
21 > 20 C 1
27 > 21 C 6
28 > 27 C 1
20 > 28 C >8
24 > 20 C 4
31 > 24 C 7
20 > 31 C >11
29 > 18 C 11
21 > 29 C >8
28 > 21 C 7
28 > 28 C 0
29 > 28 C 1
31 > 29 C 2
23 > 31 C >8
34 > 23 C 11

mean C .79

quality

19
21
17
19
20
21
27
28
20
24
31
20
29
21
28
28
29
31
23
34

qual_2

.

.
>4 > 2 C >6

2 > (>4) C 6
1 > 2 C >1
1 > 1 C 0
6 > 1 C 5
1 > 6 C >5

>8 > 1 C >9
4 > (>8) C 12

7 > 4 C 3
>11 > 7 C >18

11 > (>13) C 24
>8 > 11 C >19
7 > (>8) C 15

0 > 7 C >7
1 > 0 C 1
2 > 1 C 1

>8 > 2 C >10
11 > (>8) C 19



The series now appears stationary with respect to central tendency, so second differencing
does not appear necessary. However, the variability seems to be increasing over time. Transforma-
tion is considered for series in which variance changes over time and differencing does not stabilize
the variance (cf. Box, Jenkins, & Reinsel, 1994; McCleary & Hay, 1980). The logarithmic transfor-
mation is appropriate. Because of the zero and negative values in qual_1, with >11 the largest neg-
ative value, 12 is added before computing the log (Table 18.4).

The transformed difference is plotted to see if both mean and variance are now stabilized, as
seen in Figure 18.3.

Although the scale has changed, the transformed difference does not appear to have less vari-
ability than the untransformed difference. There is also the usual problem of increased difficulty of
interpretation of transformed variables. Therefore, the untransformed difference is used in future
analyses.

18.4.1.2 Auto-Regressive Components

The auto-regressive components represent the memory of the process for preceding observations.
The value of p is the number of auto-regressive components in an ARIMA (p, d, q) model. The value
of p is 0 if there is no relationship between adjacent observations. When the value of p is 1, there is
a relationship between observations at lag 1 and the correlation coefficient �1 is the magnitude of the
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FIGURE 18.2 Plot of lag 1 first differences against week for the data of Table 18.3. 
SPSS TSPLOT syntax and output.
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relationship. When the value of p is 2, there is a relationship between observations at lag 2 and the
correlation coefficient �2 is the magnitude of the relationship. Thus p is the number of correlations
you need to model the relationship.

For example, a model with p C 2, ARIMA (2, 0, 0), is

Yt C �1Yt>1 = �2Yt>2 = at (18.3)

18.4.1.3 Moving Average Components

The moving average components represent the memory of the process for preceding random shocks.
The value q indicates the number of moving average components in an ARIMA (p, d, q). When q is
zero, there are no moving average components. When q is 1, there is a relationship between the cur-
rent score and the random shock at lag 1 and the correlation coefficient T1 represents the magnitude
of the relationship. When q is 2, there is a relationship between the current score and the random
shock at lag 2, and the correlation coefficient T2 represents the magnitude of the relationship.

Thus, an ARIMA (0, 0, 2) model is

Yt C at > T1at>1 > T2at>2 (18.4)
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TABLE 18.4 Log Transformation of Lag 1 First
Difference of Table 18.3

week

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

qual_1

.
2

>4
2
1
1
6
1

>8
4
7

>11
11
>8

7
0
1
2

>8
11

quality

19
21
17
19
20
21
27
28
20
24
31
20
29
21
28
28
29
31
23
34

log(qual_1 + 12)

.
1.15
0.9
1.15
1.11
1.11
1.26
1.11
0.6
1.2
1.28
0
1.32
0.6
1.28
1.08
1.11
1.15
0.6
1.36



18.4.1.4 Mixed Models

Somewhat rarely, a series has both auto-regressive and moving average components so both types
of correlations are required to model the patterns. If both elements are present only at lag 1, the equa-
tion is:

Yt C �1Yt>1 > T1at>1 = at (18.5)

18.4.1.5 ACFs and PACFs

Models are identified through patterns in their ACFs (autocorrelation functions) and PACFs (partial
autocorrelation functions). Both autocorrelations and partial autocorrelations are computed for
sequential lags in the series. The first lag has an autocorrelation between Yt>1 and Yt , the second lag
has both an autocorrelation and partial autocorrelation between Yt>2 and Yt , and so on. ACFs and
PACFs are the functions across all the lags.

The equation for autocorrelation is similar to bivariate r (Equation 3.29) except that the over-
all mean Y is subtracted from each Yt and from each Yt>k , and the denominator is the variance of the
whole series.

Time-Series Analysis 18-13

FIGURE 18.3 Plot of log of the lag 1 difference scores of Table 18.4. 
SPSS TSPLOT syntax and output.
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rk C

1
N > k

}N>k

tC1

(Yt > Y )(Yt>k > Y )

1
N > 1

}N

tC1

(Yt > Y )2

(18.6)

where N is the number of observations in the whole series, k is the lag. Y is the mean of
the whole series and the denominator is the variance of the whole series.

The standard error of an autocorrelation is based on the squared autocorrelations from all pre-
vious lags. At lag 1, there are no previous autocorrelations, so r 2

0 is set to 0.

SErk
C

‡̂‡‡‡‡‡‡†
1 = 2

}k>1

lC0

r 2
l

N
(18.7)

The equations for computing partial autocorrelations are much more complex, and involve a recur-
sive technique (cf. Dixon, 1992, p. 619). However, the standard error for a partial autocorrelation is
simple and the same at all lags:

SEpr C
1‚
N

(18.8)

The series used to compute the autocorrelation is the series that is to be analyzed. Because
differencing is used with the small-sample example to remove linear trend, it is the differenced
scores that are analyzed. For the small-sample example of Table 18.2 the mean of the differ-
enced series is 0.79, that is Y C 0.79. The autocorrelation at lag 1 is computed between pairs of dif-
ferenced scores at Yt and Yt>1, as seen in Table 18.5. Notice that there are only 18 such pairs, one pair
lost to differencing and a second to lag. Also notice that the scores have been inverted so that Week
20 is first.

For the first lag, the autocorrelation is found by applying Equation 18.6 to the differenced data,
recalling that in the original series N C 20:

r1 C

1
19

[(11 > .79)(>8 > .79) = (>8 > .79)(2 > .79) = ß = (>4 > .79)(2 > .79)]

1
19

[(11 > .79)2 = (>8 > .79)2 = ß = (2 > .79)2]
C >.61

Using Equation 18.7, the standard error of the autocorrelation for the first lag is

SEr1
C

‡̂‡† 1 = 2(0)
20

C 0.22

Autocorrelations and standard errors for other lags are calculated by the same procedure.
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Using Equation 18.8, the standard error of all the partial correlations is

SEpr C
1ƒ
20

C 0.22

Calculation of the partial autocorrelations after the first few is labor intensive. However,
McCleary and Hay (1980) provide equations showing the following relationships between ACF and
PACF for the first three lags.

PACF(1) C ACF(1) (18.9)

PACF(2) C
ACF(2) > (ACF(1))2

1 > [ACF(1)]2 (18.10)

PACF(3) C
>2(ACF(1))ACF(2) > [ACF(1)]2ACF(3)

1 = 2[ACF(1)]2ACF(2) > [ACF(2)]2 > 2[ACF(1)]2 (18.11)
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TABLE 18.5 Pairs of Differenced Scores for
Lag 1 Autocorrelation from Data of Table 18.3

Week

20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3

Differenced
Score at t

11
>8

2
1
0
7

>8
9

>11
7
4

>8
1
6
1
1
2

>4

Differenced
Score at t > 1

>8
2
1
0
7

>8
9

>11
7
4

>8
1
6
1
1
2

>4
2



If an autocorrelation at some lag is significantly different from zero, the correlation is included
in the ARIMA model. Similarly, if a partial autocorrelation at some lag is significantly different from
zero, it, too, is included in the ARIMA model. The significance of full and partial autocorrelations is
assessed using their standard errors.

Although you can look at the autocorrelations and partial autocorrelations numerically, it is
standard practice to plot them. The center vertical (or horizontal) line for these plots represents full
or partial autocorrelations of zero; then symbols such as * or _ are used to represent the size and
direction of the autocorrelation and partial autocorrelation at each lag. You compare these obtained
plots with standard, and somewhat idealized, patterns that are shown by various ARIMA models, as
discussed more completely in Section 18.6.1.

The ACF and PACF for the first 10 lags of the differenced scores of Table 18.3 are seen in Fig-
ure 18.4, as produced by SPSS ACF.

The boundary lines around the functions are the 95% confidence bounds. The pattern here is a
large, negative autocorrelation at lag 1 and a decaying PACF, suggestive of an ARIMA (0, 0, 1)
model, as illustrated in Section 18.6.1. Recall, however, that the series has been differenced, so the
ARIMA model is actually (0, 1, 1). The series apparently has both linear trend and memory for
the preceding random shock. That is, the quality of the computers is generally increasing, however,
the quality in one week is influenced by random events in the manufacturing process from both the
current and preceding weeks. The q value of 1 indicates that, with a differenced series, only the first
of the two correlations in Equation 18.4 needs to be estimated, the correlation coefficient T1:

Yt C at > T1at>1

18.4.2 Estimating Model Parameters

Estimating the values of parameters in models consists of estimating the � parameter(s) from an
auto-regressive model or the T parameter(s) from a moving average model. As indicated by
McDowall et al. (1980) and others, the following rules apply:

1. Parameters must differ significantly from zero and all significant parameters must be included
in the model.

2. Because they are correlations, all auto-regressive parameters, �, must be between >1 and 1. If
there are two such parameters (p C 2) they must also meet the following requirements:

�1 = �2 A 1 and

�2 > �1 A 1

These are called the bounds of stationarity for the auto-regressive parameter(s).
3. Because they are also correlations, all moving average parameters, T, must be between >1 and

1. If there are two such parameters (q C 2) they must also meet the following requirements:

T1 = T2 A 1 and

T2 > T1 A 1.

These are called the bounds of invertibility for the moving average parameter(s).
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ACF
/VARIABLES = QUAL_1
/NOLOG
/MXAUTO 10
/SERROR = MA
/PACF.

MODEL:  MOD_1.

Variable:  QUAL_1      Missing cases:  1     Valid cases:  19

Autocorrelations:  QUAL_1   SDIFF(QUALITY,1,1)

Auto- Stand. 
Lag  Corr.   Err. -1 -.75  -.5  -.25  0   .25  .5   .75   1  Box-Ljung  Prob.

________________________________________|    |    |    |    |    |    |    |    |
1  -.615   .229         ***.********|        .                 8.377   .004
2   .128   .304         .           |***        .              8.762   .013
3   .047   .307         .           |*          .              8.817   .032
4  -.175   .307         .        ***|           .              9.630   .047
5   .259   .312         .           |*****      .             11.540   .042
6  -.213   .323        .        ****|           .             12.934   .044
7   .203   .331        .            |****       .             14.299   .046
8  -.264   .337        .       *****|           .             16.830   .032
9   .137   .348        .            |***        .             17.579   .040
10   .070   .351        .            |*          .             17.799   .058

Plot Symbols:     Autocorrelations *     Two Standard Error Limits.
Standard errors are based on the Bartlett (MA) approximation.

Total cases:   20      Computable first lags:   18

Partial Autocorrelations:   QUAL_1   SDIFF(QUALITY,1,1)

Pr-Aut- Stand. 
Lag  Corr.   Err. -1 -.75  -.5  -.25  0   .25  .5   .75   1

________________________________________|    |    |    |    |    |    |    |    |
1  -.615   .229         ***.********|        .
2  -.402   .229            .********|        .
3  -.172   .229            .     ***|        .
4  -.329   .229            . *******|        .
5  -.045   .229            .       *|        .
6  -.091   .229            .      **|        .
7   .171   .229            .        |***     .
8  -.154   .229            .     ***|        .
9  -.174   .229            .     ***|        .
10  -.058   .229            .       *|        .

Plot Symbols:      Autocorrelations *    Two Standard Error Limits .

Total cases:  20     Computable first lags: 18

FIGURE 18.4 ACF and PACF for differenced scores of Table 18.3. SPSS ACF syntax and output.

(continued)



Complex and iterative maximum likelihood procedures are used to estimate these parameters.
The reason for this is seen in an equation for T1:

T1 C
>cov(at at>1)

^2
N

(18.12)

The problem, of course, is that the sizes of the random shocks at various time periods are not known.
Rather, this part of the process has to be estimated. For the ARIMA (0, 1, 1) model of the small-
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FIGURE 18.4 Continued
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sample example data of Table 18.3, SAS estimates that T1 C .73, and SPSS estimates it at .69. Either
value is significant. The equation for the differenced series is, then, about

Yt C at > .71at>1

18.4.3 Diagnosing a Model

How well does the model fit the data? Are the values of observations predicted from the model close
to actual ones? 

If the model is good, the residuals (differences between actual and predicted values) of the
model are a series of random errors. These residuals form a set of observations that are examined the
same way as any time series.

ACFs and PACFs for the residuals of the model are examined. As recommended by Pankrantz
(1983), if the residuals represent only random error, the absolute value of t

‰
C rt

(
SEr

�
for autocor-

relations at each of the first three lags2 should be less than 1.25 and for later lags less than 1.60. How-
ever, as McCain and McCleary (1979) point out, if there are many lags (say, 30 or more) one or two
of the higher-order lags may exceed these criteria by chance even if the residuals are essentially ran-
dom. An alternative method is available through SAS ARIMA, in which there is a check to see if the
first several lags deviate from random error (called white noise).

SPSS ARIMA adds residuals into the data set in a column called ERR_1 or ERR#1. ACFs and
PACFs are requested for this added variable and examined for patterns. If the residuals represent only
random error, there should be no sizeable full and partial autocorrelations remaining in the data. All
of the autocorrelations should fall within their 95% confidence intervals, and the criteria proposed by
Pankrantz should be met.

Figure 18.5 shows the ACFs and PACFs for the ERR_1 column created after specification of the
ARIMA (0, 1, 1) model (note that sometimes SPSS labels the column ERR#1). The standard method
is specified for estimating standard errors (SERROR=MA), rather than the default SPSS method.

At lag 1, the absolute value of t for the first autocorrelation is 1.92 
‰
>.440

(
.229

�
, larger than the

value of 1.25 recommended by Pankrantz. The Box-Ljung statistic for this lag—another test that the
ACF does not differ from zero—is also significant. All of the other full and partial autocorrelations in
the first 10 lags are acceptable. To try to improve the fit, it is decided to try an ARIMA (1, 1, 0) model.
The results, including the ACF and PACF for the residuals, appear in Table 18.6.

At this point, all of the autocorrelations are small and nonsignificant, as are the partial autocor-
relations, except for lag 8, which is assumed to be random. The t value for the first autocorrelation is‰
.322

(
.229 C

�
1.41, larger than the 1.25 value recommended by Pankrantz, but not significant. The

parameter for the model is �1 C -.68624562 and is statistically significant, APPROX. PROB. =
.00205822. Therefore, the decision is to use this ARIMA (1, 1, 0) model. With this model, there is
both trend (the quality of the computers is generally improving over time) and auto-regression in the
model (the quality at one week depends on the quality of computers produced in the preceding week).

18.4.4 Computer Analysis of Small-Sample Time-Series Example

This section and some of the previous tables and figures show runs for identification, estimation, and
diagnosis through SPSS and SAS for the small-sample time-series data of Table 18.2. The diagnosis

Time-Series Analysis 18-19

2And seasonal lags.
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ARIMA QUALITY
/MODEL=(0 1 1 )CONSTANT.

ACF
/VARIABLES = err_1
/NOLOG
/MXAUTO 10
/SERROR = MA
/PACF.

MODEL:  MOD_3.

Variable:  ERR_1        Missing cases:  1     Valid cases:  19

Autocorrelations:  ERR_1    Error for QUALITY from ARIMA, MOD_8 CON

Auto- Stand. 
Lag  Corr.   Err. -1 -.75  -.5  -.25  0   .25  .5   .75   1  Box-Ljung  Prob.

________________________________________|    |    |    |    |    |    |    |    |
1  -.401   .229            .********|        .                 3.568   .059
2   .033   .264          .          |***       .               3.594   .166
3   .006   .264          .          *          .               3.595   .309
4  -.159   .264          .       ***|          .               4.269   .371
5   .168   .269          .          |***       .               5.071   .407
6  -.179   .274          .      ****|          .               6.053   .417
7   .098   .281          .          |**        .               6.369   .497
8  -.295   .282          .    ******|          .               9.533   .299
9   .200   .298         .           |****      .              11.121   .268
10   .100   .305         .           |**        .              11.567   .315

Plot Symbols:     Autocorrelations *     Two Standard Error Limits .
Standard errors are based on the Bartlett (MA) approximation.

Total cases:  20     Computable first lags:  18

Partial Autocorrelations:   ERR_1    Error for QUALITY from ARIMA, MOD_8 CON

Pr-Aut- Stand. 
Lag  Corr.   Err. -1 -.75  -.5  -.25  0   .25  .5   .75   1

________________________________________|    |    |    |    |    |    |    |    |
1  -.401   .229            .********|        .
2  -.152   .229            .     ***|        .
3  -.049   .229            .       *|        .
4  -.209   .229            .    ****|        .
5  -.018   .229            .        *        .
6  -.151   .229            .     ***|        .
7  -.040   .229            .       *|        .
8  -.407   .229            .********|        .
9  -.113   .229            .      **|        .
10   .037   .229            .        |*       .

Plot Symbols:      Autocorrelations *    Two Standard Error Limits .

Total cases:  20     Computable first lags: 18

FIGURE 18.5 ACF and PACF for the residuals. SPSS ACF syntax and output.
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TABLE 18.6 Estimation and Diagnosis of an ARIMA (1, 1, 0) Model 
for the Data of Table 18.2 (SPSS ARIMA and ACF Syntax and Selected Output)

ARIMA QUALITY
/MODEL=( 1 1 0)NOCONSTANT
/MXITER 10
/PAREPS .001
/SSQPCT .001
/FORECAST EXACT.

ACF
/VARIABLES = ERR#1
/NOLOG
/MXAUTO 10
/SERROR=MA
/PACF.

MODEL: MOD_2

Model Description:

Variable: QUALITY
Regressors: NONE

Non-seasonal differencing: 1
No seasonal component in model.

FINAL PARAMETERS:

Number of residuals  19
Standard error        4.6624974
Log likelihood      -56.017981
AIC                 114.03596
SBC                 114.9804

Analysis of Variance:

DF  Adj. Sum of Squares   Residual Variance

Residuals    18            404.63345           21.738882

Variables in the Model:

B         SEB      T-RATIO   APPROX. PROB.

AR1   -.68624562   .19075163   -3.5975873      .00205822

The following new variables are being created:

Name        Label

FIT#1       Fit for QUALITY from ARIMA, MOD_2 NOCON
ERR#1       Error for QUALITY from ARIMA, MOD_2 NOCON
LCL#1       95% LCL for QUALITY from ARIMA, MOD_2 NOCON
UCL#1       95% UCL for QUALITY from ARIMA, MOD_2 NOCON
SEP#1       SE of fit for QUALITY from ARIMA, MOD_2 NOCON

(continued)
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TABLE 18.6 Continued

MODEL:  MOD_3.

Variable:  ERR#1        Missing cases:   1     Valid cases:   19

Autocorrelations:   ERR#1   Error for QUALITY from ARIMA, MOD_2 NOCO

Auto- Stand.                                            
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1    Box-Ljung  Prob.

|----|----|----|----|----|----|----|----|

1  -.322   .229             .  ******|        .                   2.304   .129
2  -.217   .252            .     ****|         .                  3.404   .182
3   .040   .262            .         |*        .                  3.443   .328
4  -.083   .262            .       **|         .                  3.624   .459
5   .129   .263           .          |***       .                 4.102   .535
6  -.016   .267           .          *          .                 4.109   .662
7   .004   .267           .          *          .                 4.110   .767
8  -.286   .267           .    ******|          .                 7.085   .527
9   .258   .283           .          |*****     .                 9.738   .372
10   .154   .295          .           |***        .               10.787   .374

Plot Symbols:      Autocorrelations *     Two Standard Error Limits.
Standard errors are based on the Bartlett (MA) approximation.

Total cases:  20     Computable first lags:  18

Partial Autocorrelations:   ERR#1   Error for QUALITY from ARIMA, MOD_2 NOCO

Pr-Aut- Stand. 
Lag  Corr.   Err.  -1  -.75  -.5 -.25  0  .25   .5  .75    1 

|----|----|----|----|----|----|----|----|

1  -.322   .229             .  ******|        .
2  -.358   .229             . *******|        .
3  -.218   .229             .    ****|        .
4  -.310   .229             .  ******|        .
5  -.114   .229             .      **|        .
6  -.134   .229             .     ***|        .
7  -.041   .229             .       *|        .
8  -.469   .229             *********|        .
9  -.178   .229             .    ****|        .
10  -.082   .229             .      **|        .

Plot Symbols:      Autocorrelations *     Two Standard Error Limits.

Total cases:  20     Computable first lags:  18



run assumes an ARIMA (1, 1, 0) model. Programs demonstrated are SAS ARIMA and SPSS ACF
and ARIMA. Initial data are arranged in two columns, as seen in Table 18.2; as the analysis proceeds,
additional columns may be added.

Using SPSS, the first step is examination of a plot of the series over time, as demonstrated in
Figure 18.1 with SPSS syntax and output. If differencing is required, the sequence is reexamined, as
seen in Figure 18.2. SPSS ACF is used for the identification phase, as demonstrated in Figure 18.4.
SPSS ARIMA is used during the estimation phase, as seen in Table 18.6. Because the DV is differ-
enced, the constant is excluded from the model using NOCONSTANT. Remaining instructions are
produced by default in the SPSS Windows menu system.

The estimation for �1 is from the Variables in the Model: segment of output, labeled
B. The value is AR1 -.68624562 and the associated T-RATIO with its APPROX. PROB. of
-3.5975873 and .00205822, respectively, indicates that the correlation is significantly differ-
ent from zero. AIC and SBC are discussed in Section 18.6.4. Residual variance is discussed in Sec-
tion 18.6.2. Notice in the section labeled The following new variables are being
created: that ERR_1 is added to the list of variables in the data set. These are the residuals which
are examined in the diagnostic phase using SPSS ACF again, as seen in Table 18.6 and Figure 18.5.

Table 18.7 contains the SAS GPLOT syntax for producing the initial plots of the series over
time, with and without differencing. The variable qual_1 is the first-differenced time series of
Table 18.3.

Table 18.8 shows plots of the ACF and PACF generated by SAS ARIMA. First-differencing
with lag = 1 is produced in SAS ARIMA by adding (1) to the DV in the variable instruction:
var=quality(1).

SAS ARIMA prints the zero-lag (perfect) correlation as the first row in the ACF. After that,
autocorrelations, standard errors of autocorrelations, and partial autocorrelations match those of
SPSS ACF. SAS ARIMA also prints the inverse autocorrelations. These are used for the same
purposes as the PACF, but are better in some circumstances (e.g., with subset and seasonal auto-
regressive models). They may also indicate over-differencing, as noted in the on-disk documenta-
tion. The final table,AutocorrelationCheckforWhiteNoise, shows that, as a whole,
the autocorrelations reliably differ from zero, Prob>ChiSq=0.0441.

Table 18.9 shows the modeling run. The estimate instruction specifies a model with one
auto-regressive component (p=1) and no constant (noint).

ACF and PACF plots are not shown here, but are the same as those produced by SPSS, with the
addition of the inverse autocorrelation plot. The Autocorrelation Check of White
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TABLE 18.7 SAS Syntax for the First Steps in Identification of a Time Series

Statistics Produced

Figure 18.1

Figure 18.2

Syntax

proc gplot data=SASUSER. SSTIMSER;
plot quality * week /

run;

proc gplot data=SASUSER. SSTIMSER;
plot qual_1 * week /

run;
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Noise is useful for model diagnosis, to be discussed in Section 18.4.3. The parameter estimate is
>0.72743 with an approximate standard error of 0.19450. This is followed by information on resid-
uals similar to that of SPSS ARIMA.

SAS ARIMA also provides an Autocorrelation Check of Residuals, which
assesses the departure of model residuals from random error. A significant result suggests discrep-
ancies between the model and the data.

18.5 Types of Time-Series Analyses

There are two major varieties of time-series analysis: time domain (including Box-Jenkins ARIMA
analysis) and spectral domain (including Fourier—Spectral—analysis). Time domain analyses deal
directly with the DV over time; spectral domain analyses decompose a time series into its sine wave
components. Either time or spectral domain analyses can be used for identification, estimation, and
diagnosis of a time series. However, current statistical software offers no assistance for intervention
analysis using spectral methods. As a result, this chapter is limited to time domain analyses. Numer-
ous complexities are available with these analyses, however: seasonal autocorrelation and one or
more interventions (and with different effects), to name a few.

18.5.1 Models with Seasonal Components

Seasonal autocorrelation is distinguished from “local” autocorrelation in that it is predictably spaced in
time. Observations gathered monthly, for example, are often expected to have a spike at lag 12 because
many behaviors vary consistently from month to month over the year. Similarly, observations made
daily could easily have a spike at lag 7, and observations gathered hourly often have a spike at lag 24.3

These seasonal cycles can often be postulated a priori, while local cycles are inferred from the data.
Like local cycles, seasonal cycles show up in plots of ACFs and PACFs as spikes. However,

they show up at the appropriate lag for the cycle. Like local cycles, these autocorrelations can also
be auto-regressive or moving average (or both). And, like local autocorrelation, a seasonal auto-
regressive component tends to produce a decaying ACF function and spikes on the PACF while a
moving average component tends to produce the reverse pattern.

When there are both local and seasonal trends, d, multiple differencing is used. For weekly
measurement, as in the computer quality example, there could be a local linear trend at lag 1 and also
a seasonal linear trend at lag 4 (monthly).

Seasonal models may be either additive or multiplicative. The additive seasonal model just
described would be (0, 2, 0), with differencing at lags 1 and 4. The notation for a multiplicative sea-
sonal model is ARIMA (p, d, q)(P, D, Q)s, where s is the seasonal cycle. Thus, the notation for a sea-
sonal model with a local trend at lag 1 and a seasonal trend component at lag 4 is (0, 1, 0)(0, 1, 0)4. In
this model, the interaction between time and seasons also is of interest. For example, the seasonal trend
may be stronger at lower (or higher) levels of the series. The additive model is more parsimonious than
the multiplicative model, and it is often found that the multiplicative component is very small (McCain
& McCleary, 1979). Therefore, an additive model is recommended unless the multiplicative model is
required to produce acceptable ACF and PACF, as well as significant parameter estimates.

Time-Series Analysis 18-27

3Notice that the expected lag is one less than the cycle when the first observation is “used up” in differencing.



As an example of a seasonal model, reconsider the computer quality data, but this time with a
linear trend added every four weeks. Perhaps monthly pep talks are given by the manager, or morale
is improved by monthly picnics, or greater effort is made after receiving a monthly paycheck, or
whatever. Data appear in Table 18.10 and are plotted using SPSS TSPLOT.

In the plot of quality, the astute observer might notice peaks at the first, fifth, ninth, thirteenth,
and seventeenth weeks, indicative of a lag 3 autocorrelation after differencing. However, the pattern
is much more evident from the ACF and PACF plots of differenced scores as seen in Figure 18.6, cre-
ated by SPSS ACF.
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TABLE 18.10 Data with Both Trend and Seasonality

Week

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Quality

26
21
17
19
28
21
27
28
29
24
31
20
39
21
28
28
40
31
23
34

50

20

Q
U

A
LI

T
Y

40

30

10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

WEEK
20

CREATE
QUAL_1 = SDIFF(QUALITY 1 1).
ACF
/VARIABLES = QUAL_1
/NOLOG
/MXAUTO 10
/SERROR=MA
/PACF.

FIGURE 18.6 ACF and PACF for the differenced scores of data with both 
seasonality and trend from Table 18.12. SPSS ACF syntax and output.
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The large partial autocorrelation at lag 3 indicates the presence of a monthly trend which has
not yet been removed by differencing. SPSS syntax for this differencing is seen in Figure 18.7,
together with the ACF and PACF for the results. The large ACF at lag 1 remains in the data to be mod-
eled with a moving average component, an auto-regressive component, or both.

The large PACF at lag 3 is now removed. The remaining autocorrelation can be modeled using
ARIMA (1, 0, 0). The final model is ARIMA (1, 1, 0)(0, 1, 0)4. Section 18.7.4 shows a seasonal
model with intervention through SAS ARIMA.

18.5.2 Models with Interventions

Intervention, or interrupted, time-series analyses compare observations before and after some iden-
tifiable event. In quasi-experiments, the intervention is an attempt at experimental manipulation;
however, the techniques are applicable to analysis of any event that occurs during the time series. The
goal is to evaluate the impact of the intervention.

Interventions differ in both the onset (abrupt or gradual) and duration (permanent or 
temporary) of the effects they produce. An impulse intervention occurs once, briefly, and often pro-
duces an effect with abrupt onset and temporary duration. An earthquake or a riot is likely to have
such an effect. Sometimes discrete interventions occur several times (e.g., assassinations). Quasi-
experiments, on the other hand, are more likely to have an intervention that continues over consider-
able time; the effects produced are often also permanent or of long duration, but the onset can be
either gradual or abrupt. For example, the profit-sharing plan applied to the small-sample computer
quality example is likely to have a gradual-onset, long-duration effect. However, some impulse inter-
ventions also have an abrupt-onset, long-term or permanent effect; an example is bypass surgery.

The connection between an intervention and its effects is called a transfer function. In time-
series jargon, an impulse intervention is also called an impulse or a pulse indicator and the effect is
called an impulse or a pulse function. An effect with abrupt onset and permanent or long duration is
called a step function. Because there are two levels of duration (permanent and temporary) and two
levels of onset (abrupt and gradual), there are four possible combinations of effects, but the gradual-
onset, short-term effect occurs rarely and requires curve fitting (Dixon, 1992). Therefore, it is not
covered in this chapter.

Intervention analysis requires a column for the indicator variable that flags the occurrence of
the event. With an impulse indicator, a code of 1 is applied in the indicator column at the single spe-
cific time period of the intervention and a code of 0 to the remaining time periods. When the inter-
vention is of long duration or the effect is expected to persist, the column for the indicator contains
0s during the baseline time period and 1s at the time of and after the intervention.

Intervention analysis begins with identification, estimation, and diagnosis of the observations
before intervention. The model, including the indicator variable, is then re-estimated for the entire
series and the results diagnosed. The effect of the intervention is assessed by interpreting the coeffi-
cients for the indicator variable.

Transfer functions have two possible parameters. The first parameter, d, is the magnitude of
the asymptotic change in level after intervention. The second parameter, P, reflects the onset of the
change, the rate at which the post-intervention series approaches its asymptotic level. The ultimate
change in level is

level change C
d

1 > P
(18.13)
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18-31

CREATE
QUAL_2 = SDIFF(QUAL_1 1 3).
ACF
/VARIABLES = QUAL_2
/NOLOG
/MXAUTO 10
/SERROR=MA
/PACF.

MODEL:  MOD_2.

Variable:  QUAL_2       Missing cases:  4     Valid cases:  16

Autocorrelations:   QUAL_2   SDIFF(QUAL_1,1,3) 

Auto- Stand. 
Lag  Corr.   Err. -1 -.75  -.5  -.25  0   .25  .5   .75   1  Box-Ljung  Prob.

________________________________________|    |    |    |    |    |    |    |    |
1  -.790   .250     ******.*********|         .               11.993   .001
2   .626   .375      .              |************* .          20.049   .000
3   .619   .435    .    ************|                .        28.546   .000
4   .549   .487  .                  |***********       .      35.787   .000
5  -.396   .525             ********|                         39.884   .000
6   .259   .543                     |*****                    41.821   .000
7  -.264   .551                *****|                         44.047   .000
8   .270   .558                     |*****                    46.674   .000
9  -.204   .567                 ****|                         48.381   .000
10   .134   .571                     |***                      49.243   .000

Plot Symbols:     Autocorrelations *     Two Standard Error Limits .
Standard errors are based on the Bartlett (MA) approximation.

Total cases:  20     Computable first lags:  15

Partial Autocorrelations:   QUAL_2   SDIFF(QUAL_1,1,3)

Pr-Aut- Stand. 
Lag  Corr.   Err. -1 -.75  -.5  -.25  0   .25  .5   .75   1

________________________________________|    |    |    |    |    |    |    |    |
1  -.790   .250     ******.*********|         .
2   .003   .250           .         *         .
3  -.330   .250           .  *******|         .
4  -.114   .250           .       **|         .
5   .160   .250           .         |***      .
6  -.173   .250           .      ***|         .
7  -.218   .250           .     ****|         .
8   .079   .250           .         |**       .
9  -.041   .250           .        *|         .
10  -.134   .250           .      ***|         .

Plot Symbols:      Autocorrelations *    Two Standard Error Limits .

Total cases:  20     Computable first lags:  15

FIGURE 18.7 ACF and PACF for data of Table 18.10 after differencing both local 
and seasonal linear trends. SPSS ACF syntax and output.



Both d and P are tested for significance. If the null hypothesis that d is 0 is retained, there is
no impact of intervention. If d is significant, the size of the change is d. The P coefficient varies
between 0 and 1. When P is 0 (nonsignificant), the onset of the impact is abrupt. When P is signifi-
cant but small, the series reaches its asymptotic level quickly. The closer P is to 1, the more gradual
the onset of change. SAS permits specification and evaluation of both d and P but SPSS permits eval-
uation only of d.

18.5.2.1 Abrupt, Permanent Effects

Abrupt, permanent effects, called step functions, are those that are expected to show an immediate
impact and continue over the long term. All post-intervention observations are coded 1 and d is spec-
ified, but not P (or it is specified as 0).

Table 18.11 contains hypothetical data and plot for an intervention analysis in which another
20 observations are added to the original 20 of Table 18.2. The first 20 observations are the same as
Table 18.2 and are adequately modeled by ARIMA (1, 1, 0), as previously. The plot shows an appar-
ent discontinuity at the 21st week when the profit-sharing plan was initiated. Notice that the trend
that was evident in the first 20 weeks continues through the second 20.

SPSS ARIMA syntax and output for intervention analysis are in Table 18.12. The intervention
is specified by adding WITH profit to the ARIMA paragraph. The auto-regressive model is then spec-
ified as MODEL=(1 1 0). The constant is not used because of the differencing. The assumption is,
of course, that the same underlying patterns as in the first 20 weeks continue in weeks 21–40, with a
possible intervention effect superimposed. The rest of the syntax is produced by default through the
SPSS menu system.

The effect of the intervention is assessed by examining the Variables in the Model seg-
ment of output where the T-RATIO and APPROX. PROB. for PROFIT are 3.5722935 and
.00100388, respectively, so that there is a statistically significant intervention effect. The magni-
tude (slope) of impact is indicated by the regression coefficient (B) for PROFIT: 14.075030.
That is, quality increased by about 14 units as a result of the intervention.

The ACF and PACF for the residuals, ERR_1, as produced for this solution by SPSS are
acceptable (except for the pesky autocorrelation and PACF at lag 8, an artifact of the way the data set
was generated).

Table 18.13 shows the same analysis through SAS. The variable indicating the intervention
is identified in two places: crosscorr=PROFIT(1) in the identify paragraph, and
input=PROFIT in the estimate paragraph. The parenthetical 1 differences the IV. 

The intervention variable is labeled NUM1 (profit to the right in the table). Output is con-
sistent with that of SPSS, with small differences in parameter estimates. The Autocorrela-
tion Check of Residuals shows no problem with fit up until the 24th lag at M C .05, but
significant deviation from random autocorrelation for very late lags. Section 18.7.4 shows an abrupt,
permanent intervention model with a seasonal component through SAS ARIMA.

18.5.2.2 Abrupt, Temporary Effects

Now suppose that the intervention has a strong, abrupt initial impact that dies out quickly. This is
called a pulse effect. Effects like this are often seen with natural or man-made disasters. Or perhaps
New Year’s resolutions.
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A hypothetical data set and plot for this kind of impact is in Table 18.14 in which the inter-
vention is a pep talk given at the 21st week by the CEO.

The first 20 weeks are modeled as ARIMA (1, 1, 0), as previously, before the effect of the
intervention is tested on the differenced variable qualit_1. SPSS syntax and output for the test of the
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TABLE 18.11 Data Set for an Intervention with an Abrupt Onset,
Long Duration Effect

Week

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Profit

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Week

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Profit

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Quality

19
21
17
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intervention appear in Table 18.15. Note that syntax is the same as for an abrupt, permanent effect;
only the coding of the IV is different (compare coding in Tables 18.12 and 18.15 for profit sharing
and pep talk, respectively).

The section of output labeled Variables in the Model: provides the test of the interven-
tion, labeled PEP_TALKwhere the associated T-RATIO and APPROX.PROB. are 4.2983852 and
.00234735, respectively. Thus, the pep talk has a significant, abrupt impact on the quality of the
computers produced. The size of the impact is given by the B value of 14.043981. That is, the com-
puters improve by approximately 14 units of quality immediately after the pep talk by the CEO. The
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TABLE 18.12 Intervention Analysis for Abrupt, Permanent Effect
(SPSS ARIMA Syntax and Selected Output)

* ARIMA.
TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL.
PREDICT THRU END.
ARIMA QUALITY WITH PROFIT
/MODEL=( 1 1 0) NOCONSTANT
/MXITER 10
/PAREPS .001
/SSQPCT .001
/FORECAST EXACT.

MODEL: MOD_1

Model Description:

Variable: QUALITY
Regressors: PROFIT

Non-seasonal differencing: 1
No seasonal component in model.

FINAL PARAMETERS:

Number of residuals  39
Standard error       4.8282746
Log likelihood       -116.07705
AIC                  236.1541
SBC                  239.48123

Analysis of Variance:

DF  Adj. Sum of Squares    Residual Variance

Residuals     37            878.09601            23.312235

Variables in the Model:

B         SEB      T-RATIO   APPROX. PROB.

AR1         -.708299    .1232813   –5.7453872       .00000140
PROFIT     14.075030   3.9400542    3.5722935       .00100388
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TABLE 18.14 Data Set and Plot for an Intervention 
with an Abrupt Onset, Temporary Effect

Week

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Pep Talk

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Week

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Pep Talk

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Quality

19
21
17
19
20
21
27
28
20
24
31
20
29
21
28
28
29
31
23
34

Quality

45
45
36
34
34
35
42
41
35
40
48
36
48
38
46
46
47
51
42
54

60

20
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ACF and PACF are acceptable for this model, except for the pesky partial autocorrelations at lags 3
and 4.

As for SPSS, syntax for an abrupt, temporary intervention in SAS is the same as for an abrupt,
permanent intervention, but with a change in coding of the IV.

Time-Series Analysis 18-37

TABLE 18.15 Intervention Analysis for Abrupt, Temporary Effect
(SPSS ARIMA Syntax and Output)

* ARIMA.
TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL.
PREDICT THRU END.
ARIMA QUALITY WITH PEP_TALK
/MODEL=( 1 1 0)NOCONSTANT
/MXITER 10
/PAREPS .001
/SSQPCT .001
/FORECAST EXACT.

MODEL: MOD_1

Model Description:

Variable:   QUALITY
Regressors: PEP_TALK

Non-seasonal differencing: 1
No seasonal component in model.

FINAL PARAMETERS:

Number of residuals  39
Standard error       5.3576408
Log likelihood       -120.07854
AIC                  244.15709
SBC                  247.48421

Analysis of Variance:

DF  Adj. Sum of Squares    Residual Variance
Residuals     37            1077.9915            28.704314

Variables in the Model:

B         SEB      T-RATIO   APPROX. PROB.

AR1           -.663692    .1253407   –5.2951063       .00000573
PEP_TALK     14.043981   4.2983852    3.2672690       .00234735



18.5.2.3 Gradual, Permanent Effects

Another possible effect of intervention is one that gradually reaches its peak effectiveness and then
continues to be effective. Suppose, for example, the employees don’t pay much attention to the
profit-sharing plan when it is first introduced, but that it gradually becomes more and more popular.
The data set is the same as for an abrupt, permanent effect (Table 18.11). However, now we are
proposing that there is a linear growth in the effect of the intervention from the time it is imple-
mented. SPSS cannot be used to model a gradual effect because there is no way to specify P. (You
might be able to approximate a gradual intervention effect in SPSS ARIMA by appropriately coding
the IV, if you have a very clear notion of the nature of the expected trend, such as linear for the first
5 periods and then leveling off.)

Table 18.16 shows syntax and output for modeling a gradual, permanent intervention in
SAS ARIMA, which indicates P as a denominator function (cf. Equation 18.13). The denominator
function, P, is indicated by ( / (1) PROFIT), with the / indicating denominator and the (1)
indicating that the predicted onset is linear.

The variables for d and P of Equation 18.13 are NUM1 and DEN1, indicating numerator and
denominator functions of Equation 18.13, respectively. Note that the effect of the intervention
remains statistically significant, but the test of gradualness of the impact is not. Thus, the step inter-
vention model is supported.

A seasonal component may be added by supplementing the syntax with seasonal syntax. Table
18.17 shows SPSS and SAS syntax for adding monthly differencing to the intervention analysis for
a gradual, permanent effect as shown in Tables 18.15 and 18.16.

18.5.2.4 Models with Multiple Interventions

Multiple interventions are modeled by specifying more than one IV. Several interventions can be
included in models when using either SPSS ARIMA or SAS ARIMA. Table 18.18 shows syntax for
the two programs for simultaneously modeling two interventions; say, an intervention with a step
effect and an intervention with a pulse effect, called STEP and PULSE, respectively. The syntax
assumes an ARIMA (1, 1, 0) model of the original variable, QUALITY.

18.5.3 Adding Continuous Variables

Continuous variables are added to time-series analyses to serve several purposes. One is to compare
time series over populations or over different conditions. For example, time series for computer qual-
ity might be compared for two or more plants. Or water consumption might be compared over cities
with and without water-conservation campaigns. Here, both continuous variables are considered DVs.

Another use is to add a continuous IV as a predictor. For example, a gas furnace might be
observed while measuring input gas rate (the continuous IV) and output carbon dioxide (the DV).
The goal here is to examine the relationship between the continuous IV and the DV; is output carbon
dioxide predicted by input gas rate? If so, what is the prediction equation? Think of this as a bivari-
ate regression analysis using the power of time-series analysis.

Finally, one or more continuous IVs might be added as covariates to an intervention analysis.
For example, does a profit-sharing plan increase quality after adjusting for temperature in the manu-
facturing plant? All of these are examples of multivariate time-series analysis.
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These analyses have their own assumptions and limitations. As usual, use of a covariate
assumes that it is not affected by the IV; for example, it is assumed that temperature is not affected
by introduction of the profit-sharing plan in the company under investigation. Also, for any multi-
variate time-series analysis, the CV (input) and DV (output) series must be “prewhitened”—reduced
to random noise. That is, an ARIMA model is fit to the CV. The model is then applied to the DV
before the two series are cross-correlated to determine whether both ARIMA models are the same.
The SAS ETS on-disk manual shows how to do this in the section on transfer function. We recom-
mend McCleary and Hay (1980) and/or Cromwell, Hannan, Labys, and Terraza (1994) if you plan to
do multivariate time-series analyses, particularly if you are using SPSS.

Once the ARIMA models are reduced to random noise for both series, the time-series analysis
is set up like the multiple intervention analysis of Table 18.18. That is, the CV enters the equation
just as if it were any other IV. If both ARIMA models are the same, for example, temp_1 is added to
the WITH list instead of pulse for SPSS ARIMA. For SAS ARIMA, temp_1 is added both to the
crosscorr list and to the input list instead of pulse.
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TABLE 18.18 Syntax for Multiple Intervention Models

Program

SPSS
ARIMA

SAS
ARIMA

Syntax

ARIMA quality WITH step pulse
/MODEL=( 1 1 0)NOCONSTANT
/MXITER 10
/PAREPS .001
/SSQPCT .001
/FORECAST EXACT.

proc arima data=SASUSER. TIMESP;
identify var=QUALITY(1) nlag=7

crosscorr=(STEP PULSE);
estimate p=1 noint input=(STEP PULSE);

run;

Step
Intervention

STEP

NUM1

Temporary
Intervention

PULSE

NUM2

Name of Parameter 
in Output

TABLE 18.17 SAS ARIMA Syntax for a Gradual, Permanent Intervention Analysis with a Seasonal
(Weekly) Component

proc arima data=SASUSER. INTERVN;
identify var=QUALITY(1, 7) nlag=7 crosscor=PROFIT(1, 7) WEEK(7));
estimate p=(1)(7) noint input=( / (1) PROFIT, WEEK );

run;



18.6 Some Important Issues

18.6.1 Patterns of ACFs and PACFs

ARIMA models are identified by matching obtained patterns of ACF and PACF plots with idealized
patterns. The best match often indicates which of the (p, d, q) parameters need to be included in the
model, and at what size (0, 1, or 2). Sometimes, however, more than one pattern is suggested by the
plots, or, like the small-sample example, the best pattern match does not reduce the residuals to ran-
dom error. A first best guess is made on the basis of the ACF, PACF pattern and then, if the model fits
the data poorly, another is tried out until the diagnostic phase is satisfactory.

Recall that ACF and PACF plots show deviations from zero autocorrelation. Table 18.19 shows
idealized ACF and PACF patterns for the first 10 lags for many of the more common ARIMA mod-
els. In the plots of Table 18.19, absolute (positive) values of all autocorrelations (except those of the
last model) are shown. The same type of model might produce negative autocorrelations as well, or
a mix of positive and negative autocorrelations.

A “classic” auto-regressive model—ARIMA (p, 0, 0)—has an ACF that slowly approaches 0
and a PACF that spikes at lag p. Thus, if there is a spike only at lag 1 of the PACF (partial autocorre-
lation between Yt and Yt>1) and the ACF slowly declines, the model is probably ARIMA (1, 0, 0). If
there is also a spike at lag 2 of the PACF (an autocorrelation between Yt and Yt>2 with Yt>1 partialed
out) and the ACF slowly declines, the model is likely to be ARIMA (2, 0, 0). Thus, the number of
spikes on the PACF indicates the value of p for auto-regressive models.

A “classic” moving average model—ARIMA (0, 0, q)—has an ACF that spikes on the first q
lags and a PACF that declines slowly. If there is a spike at lag 1 of the ACF and the PACF declines, the
model may be ARIMA (0, 0, 1). If there also is a spike at lag 2 of the ACF and the PACF declines, the
model is probably ARIMA (0, 0, 2). Thus, the number of spikes on the ACF indicate the value of q.

A mixed auto-regressive, moving average model has a slowly declining ACF, from the auto-
regressive portion of the model (p), and also a slowly declining PACF, from the moving average por-
tion of the model (q). The sizes of the auto-regressive and moving average parameters are not evident
from the ACF and PACF. Therefore, it is prudent to start with p C 1 and q C 1 and increase these val-
ues only if residual ACF and PACF show spikes in the diagnostic phase. If the parameters are set too
high, it may not show up in diagnosis, except perhaps as nonsignificant parameter estimates.

A nonstationary model—ARIMA (0, 1, 0)—has a single PACF spike, but there are two com-
mon ACF patterns. There may be constant spikes [Table 18.19 (a)], or there may be a “damped sine
wave” [Table 18.19 (b)], in which spikes oscillate first on one side and then on the other side of zero
autocorrelation.

If either an autocorrelation or a partial autocorrelation between observations k lags apart is sta-
tistically significant, the autocorrelation is included in the ARIMA model. The significance of an
autocorrelation is evaluated from the 95% confidence intervals printed alongside it, or from the t dis-
tribution where the autocorrelation is divided by its standard error, or from the Box-Ljung statistic
printed as standard SPSS output. Alternatively, SAS ARIMA provides tests of sets of lags. For exam-
ple, Table 18.8 shows a b2 test for the first 6 lags for the small-sample data set.

McCain and McCleary (1979) point out that sometimes a time series cannot be identified as
any ARIMA (p, d, q) after many attempts. They suggest trying out a natural log transform of the DV
before again attempting identification.
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TABLE 18.19 ACF and PACF for Common ARIMA Models. Adapted from Dixon (1992).
Used with permission.

Model

ARIMA (1, 0, 0)

ARIMA (0, 0, 1)

ARIMA (2, 0, 0)

ARIMA (0, 0, 2)

Lag

1
2
3
4
5
6
7
8
9

10

1
2
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4
5
6
7
8
9

10

1
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5
6
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8
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Figure 18.4 shows ACF and PACF plots for the small-sample example of Table 18.2. The ACF
and PACF plots for the example show a classic moving average pattern, but the data are better mod-
eled by auto-regression. This emphasizes the importance of the estimation and diagnostic phases,
and also the fact that ARIMA modeling is usually an exploratory procedure. Especially if there is an
intervention, the goal of identification, estimation, and diagnosis of the baseline data is to reduce the

Time-Series Analysis 18-43

TABLE 18.19 Continued

Model

ARIMA (p, 0, q)

ARIMA (0, 1, 0)
(a)

ARIMA (0, 1, 0)
(b)

Lag

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10
11
12

– 0 +

|_________
|___________
|___________
|_________
|_______
|_____
|___
|

p |
|

|__________
|__________
|__________
|__________
|__________
|__________
|__________
|__________
|__________
|

|________
|______
|____
|__

__|
____|
____|

__|
|__
|____
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– 0 +

|__________
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|______
|__________
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|____
|_
|

q |
|

|___________
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|
|
|
|
|
|
|

|__________
|
|
|
|
|
|
|
|
|
|
|
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pattern of autocorrelation to random error so that the intervention can be properly tested. If the data
are poorly fit by a model, the identification process is revisited until a satisfactory model is found.

18.6.2 Effect Size

Effect size in time-series analysis is based on evaluation of residuals after finding an acceptable
model. If there is an intervention, the residuals after the intervention is modeled are compared with
the residuals before the intervention is modeled.

Two measures of effect size are available (McCleary and Hay, 1980). One is a goodness-of-fit
statistic that is traditionally used with time-series analysis. However, it has no ready interpretation as
variance in the DV accounted for by the model. The other, less traditional, statistic is more easily
interpreted.

The traditional goodness-of-fit measure for time-series analysis is the residual mean square:

RMS C 1
(
N

‡̂‡‡‡†
}N

tC1

â2
t (18.14)

The residual mean square (RMS) is the average of the square root of the squared residual
values (ât) summed over the N time periods.

Both of the ARIMA programs provide RMS, as seen in Tables 18.6 and 18.11. However, SPSS
ARIMA calls the value Residual Variance and SAS ARIMA calls it Variance Esti-
mate. They also give slightly different estimates of RMS for the small-sample example.

The second, more interpretable, measure of effect size is R2, which, as usual, reflects variance
explained by the model as a proportion of total variance in the DV.

R2 C 1 >
SSâ

SSyt

(18.15)

The proportion of systematic variance explained by the model (R2) is one minus the sum
of squared residuals divided by the sum of squared Yt values, where Yt is the difference-
adjusted DV.

SAS ARIMA provides the standard deviation of the differenced series which is first converted
to variance by squaring and then converted to SS by multiplication by (N > 1). Table 18.13 shows
that StandarddeviationC 6.44, so that the variance 

‰
s2
y

�
C (6.44)2 C 41.47. With N C 40,

SSyt
C (41.47)(39) C 1617.33 for the small-sample example. Table 18.13 shows the variance for

the residuals: Variance estimate
‰
s2
â) C 23.35, with df C (N > number of parameters > 1)

C (40 > 3 > 1) C 36, so that SSâ C (23.35)(36) C 840.60. (In this example, there is one parameter
for auto-regression, one for trend, and one for intervention.) When these values are plugged into
Equation 18.15:

R2 C 1 >
840.60
1617.33

C .48
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Thus, 48% of the variance in the intervention analysis of Table 18.13 is explained by the ARIMA
(1, 1, 0) model with an abrupt, permanent effect.

If SPSS ARIMA is used, Residual Variance is the post-model SSâ. The variance of the
differenced series 

‰
S2

yt

�
is found by hand calculation in the usual manner. 

An alternative form of R2, useful when the intervention is statistically significant, is to use s2
â

for the model without the intervention parameters (but with the modeling parameters included)
instead of SSyt

in the denominator of Equation 18.15. Effect size for a model with a statistically sig-
nificant intervention is demonstrated in Section 18.7.4.2.

18.6.3 Forecasting

Forecasting refers to the process of predicting future observations from a known time series and is
often the major goal in nonexperimental use of the analysis. However, prediction beyond the data is
to be approached with caution. The farther the prediction beyond the actual data, the less reliable the
prediction. And only a small percentage of the number of actual data points can be predicted before
the forecast turns into a straight line.

Table 18.20 shows the forecast for the next 7 weeks of the data of Table 18.2 through SAS
ARIMA. The forecastlead=7 instruction indicates that the 7 weeks ahead are to be forecast.

The Obs column shows the week being forecast; the Forecast column shows the predicted
quality for the week. Standard errors and the 95% confidence intervals for quality also are
shown and can be seen to increase as the prediction progresses.

Sometimes it is interesting to compare the forecasted values of the DV without an intervention
with those that actually occurred after an intervention. Figure 18.8 plots the nonintervention pre-
dicted values as well as the actual pre-intervention and first 7 post-intervention values for the data of
Table 18.11 (abrupt, permanent intervention).

Figure 18.8 highlights the impact of the intervention by showing graphically the expected val-
ues of quality change without intervention, and the difference between those values and the actual
values after intervention.

18.6.4 Statistical Methods for Comparing Two Models

Often the identification process suggests two or more candidate models. Sometimes it is obvious
which is better because only one meets the diagnostic criteria of Section 18.6.3. Sometimes, how-
ever, both models fail to meet the criteria, or both meet all of the criteria. Statistical tests are avail-
able to determine whether two models are reliably different.

Say, for example, you wish to compare the abrupt, permanent model of Table 18.14 with the
gradual, permanent model of Table 18.16. The difference between the models is that P, the parame-
ter for gradualness, has been added to the ARIMA (1, 1, 0) model with intervention, d. Two tests
are available through SAS and SPSS ARIMA: AIC (Akaike’s Information Criterion) and SBC
(Schwarz’s Bayesian Criterion). AIC is the more commonly encountered.

The difference in AIC for the two models is evaluated as b2 with df equal to the difference in
the number of parameters for the two models.

b2 (df) C AIC(smaller model) > AIC(larger model) (18.16)
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For the sample data, the larger model is in Table 18.16 (gradual onset).

b2(1) C 235.5006 > 232.5722 C 2.93
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TABLE 18.20 Forecasting through SAS ARIMA (Syntax and Selected Output)

proc arima data=SASUSER.SSTIMSER;
identify var=QUALITY(1) nlag=7;
estimate p=1 noint;
forecast lead = 7;

run;

Forecasts for variable quality

Obs   Forecast   Std Error    95% Confidence Limits

21    25.9983      4.6679     16.8494    35.1472
22    31.8190      4.8382     22.3363    41.3016
23    27.5848      6.1166     15.5964    39.5732
24    30.6649      6.4186     18.0846    43.2451
25    28.4243      7.1957     14.3210    42.5277
26    30.0542      7.5549     15.2468    44.8615
27    28.8686      8.1263     12.9412    44.7959

FIGURE 18.8 Actual (solid) and predicted (dotted) quality 
(first-lag differenced) over 27 weeks, before and after introduction 

of the profit-sharing plan. Generated in Quattro Pro 8.
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Critical b2 (at M C .05 and 1 df) C 3.84, as seen in Table C.4. The more parsimonious model (1, 1, 0),
without the P parameter, is not significantly worse than the more complex model of gradual, perma-
nent change, consistent with the nonsignificant P parameter in Table 18.16. When two models are not
statistically different, the more parsimonious model is selected.

AIC and SBC criteria are only used to compare nested models. This means that the smaller
model (e.g., 0, 1, 0) must be a subset of the larger model (1, 1, 0). The tests are not legitimately used
to compare, for example, (1, 0, 1) and (0, 1, 0). And they could not be used to compare models in
which a different value of d is generated by coding the IV differently.

18.7 Complete Example of a Time-Series Analysis

The data for this example were collected between January 1980 and July 1990 to assess the impact
of a seat belt law enacted in 1985 in Illinois. The Illinois Department of Transportation collected
monthly data on number of accidents, deaths, and injuries (broken down by level of severity). Data
were provided by Rock (1992), who analyzed five DVs using ARIMA models. A more complete
description of the data set is in Appendix B. The current example focuses on incapacitating injuries,
those identified as “A” level. Data are in TIMESER.*.

The first 66 months serve as a baseline period, and the remaining 66 months are the post-
intervention series. Figure 18.9 plots the raw time-series data.
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FIGURE 18.9 A-level injuries over 132 months,
before and after introduction of seat belt law.

Generated in Quattro Pro 8.
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18.7.1 Evaluation of Assumptions

18.7.1.1 Normality of Sampling Distributions

Normality of sampling distributions is evaluated by examining residuals for the ARIMA model for
the baseline period as part of the diagnostic process before the intervention series is included.

18.7.1.2 Homogeneity of Variance

Homogeneity of variance is usually evaluated after initial model identification by examining plots of
standardized residuals. However, Figure 18.9 suggests heterogeneity of variance because swings
appear to be diminishing over time, particularly after introduction of the seat belt law. However, this
heterogeneity will not show up during baseline modeling because the decrease in variance occurs
after intervention. Therefore, the decision is made to use a logarithmic transform of the data before
baseline modeling. Figure 18.10 shows the time series after transformation.

18.7.1.3 Outliers

Figure 18.10 reveals no obvious outliers among the log-transformed observations. Presence of out-
liers is rechecked after modeling.

18.7.2 Baseline Model Identification and Estimation

ACF and PACF plots are produced through SAS in Table 18.21 for the pre-intervention series. The
analysis is limited to the pre-intervention series by selecting cases with BELT=0. The variable ana-
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FIGURE 18.10 Logarithmic transform of A-level injuries over 132 months,
before and after introduction of seat belt law. Generated in Quattro Pro 8.
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lyzed is the transformed one, log_inj. Only 25 lags are requested to limit length of output and
because later lags are unlikely to show significant autocorrelations.

The plots show a pattern of (0, 1, 0) when compared with Table 18.19, with large positive
spikes at lag C 12, not at all surprising with monthly data. The data first are differenced to see if the
same pattern emerges, but with the spikes closer together. Table 18.22 shows a run with differencing
at lags 1 and 12, requested by adding (1 12) to the var= instruction.

Table 18.22 shows that first-differencing with lag C 1 and 12 still produces spikes on the ACF
and PACF at lag C 1, and the pattern now resembles an ARIMA model (p, 0, q) with both AR and
MA parameters. Thus, either an additive or multiplicative seasonal model is suggested with both
auto-regressive and moving average parameters at both lags 1 and 12. In addition, either an additive
or multiplicative seasonal model is suggested with AR1, AR12, MA1, and MA12 parameters. That
is, suggested models are ARIMA (2, 2, 2) or ARIMA (1, 1, 1)(1, 1, 1)12. The more parsimonious
(2, 2, 2) model, however, produced residual ACF and PACF PLOTS (not shown) that clearly signaled
the need for further modeling, strongly resembling the (0, 1, 0) (b) model of Table 18.19.

Table 18.23 shows SAS ARIMA syntax and selected output for the (1, 1, 1)(1, 1, 1)12 model.
The ARIMA paragraph requests a (1, 1, 1)(1, 1, 1)12 model with auto-regressive parameters (p) at
lags 1 and 12, and moving average parameters (q) at lags 1 and 12, as well as differencing parame-
ters both at lags 1 and 12. The forecast instruction is necessary to produce residuals, which are saved
in a temporary file named RESID. We also ask that residuals go back 51 cases from the end of the
data and give us 52 values, so that instead of forecasting we are actually looking at predicted values
for existing data and differences between those and actual values (i.e., residuals).

18.7.3 Baseline Model Diagnosis

Table 18.23 shows that only the two moving average parameters (0.55936 and 0.57948) are
significantly different from zero at M C .05, with the t Value for MA1,1 = 2.39, Pr>| t | = 0.0208,
and MA2,1 = 2.38, Pr>| t | = 0.0238 for the second. Both parameters are between >1 and 1. Nei-
ther of the auto-regressive components is significant. Therefore, the suggested model is ARIMA
(0, 1, 1)(0, 1, 1)12.

The Autocorrelation Check of Residuals shows acceptable residuals; with 6
lags, b2(2) C 5.54, below the M C .05 criterion of 5.99. Although ACF and PACF for the residuals (the
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TABLE 18.21 ACF and PACF Plots for the Transformed Pre-Seat Belt Law Time Series
(SAS ARIMA Syntax and Selected Output)

proc arima data=SASUSER.TIMESER;
where BELT=0;
identify var=LOG_INJ nlag=25;

run;

Name of Variable = LOG_INJ

Mean of Working Series   3.570007
Standard Deviation       0.065699
Number of Observations         66

(continued)
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TABLE 18.21 Continued

Partial Autocorrelations

Lag   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1       0.61780   |               .    |************        |
2      -0.10826   |               .  **|    .               |
3      -0.32214   |              ******|    .               |
4      -0.11241   |               .  **|    .               |
5      -0.04368   |               .   *|    .               |
6      -0.28223   |              ******|    .               |
7      -0.05955   |               .   *|    .               | 
8      -0.20918   |               .****|    .               |
9       0.03416   |               .    |*    .              |
10       0.28546   |               .    |******              |
11       0.17401   |               .    |***  .              |
12       0.35243   |               .    |*******             |
13      -0.37758   |            ********|     .              |
14      -0.10238   |               .  **|     .              |
15       0.10593   |               .    |**   .              |
16      -0.05754   |               .   *|     .              |
17       0.07091   |               .    |*    .              |
18      -0.17099   |               . ***|     .              |
19      -0.00659   |               .    |     .              |
20      -0.08356   |               .  **|     .              |
21      -0.03547   |               .   *|     .              |
22      -0.05915   |               .   *|     .              |
23       0.04632   |               .    |*    .              |
24       0.05709   |               .    |*    .              |
25      -0.07699   |               .  **|     .              | 

proc arima data=SASUSER.TIMESER;
where BELT=0;
identify var=LOG_INJ(1 12) nlag=25;

run;

Name of Variable = LOG_INJ

Period(s) of Differencing                       1,12
Mean of Working Series                       -0.0001
Standard Deviation                          0.036002
Number of Observations                            53
Observation(s) eliminated by differencing         13

TABLE 18.22 ACF and PACF Plots for the Pre-Seat Belt Law Time Series with LAG 1 and 12
Differencing (SAS ARIMA Syntax and Selected Output)

(continued)
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variable called RESIDUAL in the RESID file) show significant spikes at lag 5. However, attempts to
improve the model were unsuccessful.

Residuals are examined through SAS ARIMA using the file of residuals just created. Figure
18.11 shows SAS UNIVARIATE syntax and output for a normal probability plot of residuals.

There is some departure of the plotted z-scores from the diagonal line representing a normal
distribution of them; the most negative residuals are a bit too high. A normal probability plot of the

Time-Series Analysis 18-53

TABLE 18.22 Continued

Partial Autocorrelations

Lag   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1      -0.38433   |            ********|     .              |
2      -0.19387   |              . ****|     .              |
3      -0.16115   |              .  ***|     .              |
4       0.10775   |              .     |**   .              |
5      -0.31396   |              ******|     .              |
6      -0.09584   |              .   **|     .              |
7      -0.00772   |              .     |     .              |
8       0.01194   |              .     |     .              |
9       0.11743   |              .     |**   .              |
10       0.08823   |              .     |**   .              |
11       0.32412   |              .     |******              |
12      -0.30500   |              ******|     .              |
13      -0.17454   |              .  ***|     .              |
14      -0.10257   |              .   **|     .              |
15      -0.01554   |              .     |     .              |
16       0.01689   |               .    |     .              |
17      -0.03651   |              .    *|     .              |
18      -0.09992   |              .   **|     .              |
19       0.14423   |              .     |***  .              |
20       0.01614   |              .     |     .              |
21       0.10803   |              .     |**   .              |
22      -0.06235   |              .    *|     .              | 
23       0.07362   |              .     |*    .              |
24      -0.16794   |              .  ***|     .              |
25       0.01157   |              .     |     .              |

TABLE 18.23 ARIMA (1, 1, 1)(1, 1, 1)12 Model for the Transformed Pre-Intervention Time Series

proc arima data=SASUSER.TIMESER;
where BELT=0
identify var=LOG_INJ(1, 12) nlag=36;
estimate noint p=(1)(12) q=(1)(12);
forecast out=RESID back=51 lead=52;

run; (continued)
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(transformed) scores themselves (not shown), however, indicates no such problems. Additional
transformation is unlikely to alleviate the problem in the residuals which may have been introduced
by the model itself. [Residuals for the (0, 1, 1)(0, 1, 1)12 model were not noticeably different.]

18.7.4 Intervention Analysis

18.7.4.1 Model Diagnosis

The introduction of the seat belt law was expected to have an immediate, continuing effect, therefore
all post-intervention months are coded 1, and the model chosen is the abrupt, permanent (step) func-
tion of Section 18.5.2.1. Table 18.24 shows the SAS ARIMA re-estimation of the entire series using

Time-Series Analysis 18-55

FIGURE 18.11 Normal probability plot of residuals for transformed pre-intervention
ARIMA (1, 1, 1)(1, 1, 1)12 model. SAS univariate syntax and selected output.

proc univariate data=WORK.RESID plot;
var RESIDUAL
RUN

The UNIVARIATE Procedure

Variable: RESIDUAL  (Residual: Actual-Forecast)

Normal Probability Plot
0.185+                                                *

|                                              ++
|                                            *+
|                                          *+
|                                        ++
|                                       **
|                                    ***

0.115+                                   *+
|                                ***
|                              **+
|                           ***++
|                            ++
|                          **
|                        +**

0.045+                       +**
|                     ++**
|                   ++ *
|                 ++****
|                + *
|              ****
|          ****

-0.025+  *   * * ++
+----+----+----+----+----+----+----+----+----+----+

-2        -1         0        +1        +2



the ARIMA (0, 1, 1)(0, 1, 1)12 model, with BELT as the intervention variable. Note that the seasonal
differencing requires additional syntax in an intervention analysis. First, the crosscor instruction
is expanded to include differencing in the intervention: BELT(1, 12). Then, MONTH (12)
needs to be added as well. Finally, MONTH is added to BELT in the input instruction, to indicate
that it is an “intervention” component. The outlier syntax checks for changes in level unac-
counted for by the model.

The moving average parameters are still statistically significant at M C .05 and within limits of
1 and >1. The intervention parameter is also significant at M C .05 with Pr > |t| = -2.92 for
NUM1. The AutocorrelationCheckofResiduals indicates no significant deviation of
residuals from chance to lag 24.

Remaining output summarizes model information and shows that there are no level shifts that
are not accounted for by the model at M C .001.

18.7.4.2 Model Interpretation

The negative sign of the intervention parameter (>0.06198) indicates that incapacitating injuries are
reduced after introduction of the seat belt law. The anti-log of the intervention parameter is
10>0.06198 C 0.87. In percentage terms, this indicates that A-level injuries are reduced to 87% of
their pre-intervention mean, or by about 13% after implementing the seat belt law. Interpretation is
aided by finding the median (untransformed) number of injuries before and after intervention.4 Table
18.25 shows a SAS MEANS run for medians. (Note that data are already sorted by BELT.)

Notice that the number of injuries predicted by the model after intervention (.87)(3801.5) C
3307.3 is greater than the actual number of injuries observed (2791.5). This is because the model also
adjusts the data for trends and persistence of random shocks (moving average components), and thus
more accurately reflects the impact of the intervention.

18-56 C H A P T E R  1 8

TABLE 18.24 Step Intervention Test of ARIMA (0, 1, 1)(0, 1, 1)12 Model of Injury Data
(SAS ARIMA Syntax and Selected Output)

proc arima data=SASUSER.TIMESER;
identify var=LOG_INJ (1, 12) nlag=10 crosscor=(BELT(1, 12) MONTH(12));
estimate noint q=(1)(12) input= (BELT MONTH);
outlier id=month alpha=.001;

run;

The ARIMA Procedure

Name of Variable = LOG_INJ

Period(s) of Differencing                        1,12
Mean of Working Series                       -0.00055
Standard Deviation                           0.036572
Number of Observations                            119
Observation(s) eliminated by differencing          13

4Recall from Section 4.1.6 that the median of the raw scores is an appropriate measure of central tendency after data have been
transformed.
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Effect size for the ARIMA intervention model is estimated using Equation 18.15, substituting
s2
â from the model without intervention as an estimate of SSyt

the ARIMA model without interven-
tion parameters. The Variance Estimate for the ARIMA model without intervention pa-
rameters (not shown) is 0.000752. Degrees of freedom are 119 > 4 > 1 C 114, so that
SSyt

C (0.000753)(114) C 0.0858. The Variance Estimate for the full model is 0.000719,
as seen in Table 18.24. Degrees of freedom are 119 > 6 > 1 C 112, so that SSâ C
(0.000719)(112) C 0.0805. Thus, effect size using Equation 18.15 is:

R2 C 1 >
0.0805
0.0858

C .06

That is, the intervention accounts for 6% of the variance in the ARIMA (0, 1, 1)(0, 1, 1)12 model.
Table 18.26 is a checklist for an ARIMA intervention analysis. An example of a Results sec-

tion, in journal format, follows.
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TABLE 18.24 Continued

Model for variable LOG_INJ

Period(s) of Differencing      1,12

No mean term in this model

Moving Average Factors

Factor 1:    1 - 0.58727 B**(1)
Factor 2:    1 - 0.7689 B**(12)

Input Number 1

Input Variable                   BELT
Period(s) of Differencing        1.12
Overall Regression Factor    -0.06198

Input Number 2

Input Variable                  MONTH
Period(s) of Differencing          12
Overall Regression Factor    0.000014

Outlier Detection Summary

Maximum number search               3
Number found                        0
Significant used                0.001
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TABLE 18.25 Descriptive Statistics for Untransformed Time Series Data
(SAS MEANS Syntax and Selected Output)

proc means data=SASUSER.TIMESER
N MEDIAN;
by BELT;
var INJURIES;

run;

----------------------------- BELT=0 -----------------------------

The MEANS Procedure

Analysis Variable : INJURIES

N      Median
--------------
66     3801.50
--------------

----------------------------- BELT=1 -----------------------------

Analysis Variable : INJURIES

N      Median
--------------
66     2791.50
--------------

TABLE 18.26 Checklist for ARIMA Intervention Analysis

1. Issues

a. Normality of sampling distributions

b. Homogeneity of variance

c. Outliers

2. Major analyses

a. Identification, estimation, and diagnosis of baseline model

b. Diagnosis of intervention model

c. Interpretation of intervention model parameters, if significant

d. Effect size

3. Additional analyses

a. Tests of alternative intervention models, if nonsignificant

b. Forecast of future observations

c. Interpretation of ARIMA model parameters, if significant



18.8 Comparison of Programs

SAS and SPSS each have a single program for ARIMA time-series modeling. SPSS has additional pro-
grams for producing time-series graphs and for forecasting seasonally adjusted time series. SAS has a
variety of programs for time-series analysis, including a special one for seasonally adjusted time series.
SYSTAT also has a time-series program, but it does not support intervention analysis. The programs
reviewed in Table 18.27 are those that do ordinary ARIMA modeling and produce time-series plots.
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Results

A time-series model for incapacitating injuries was developed

to examine the effect of a seat belt law, introduced in Illinois

in January 1985. Data were collected for 66 months before and 66

months after implementing the law. As seen in Figure 18.9, there

are no obvious outliers among the observations, but variance

appears to decrease over the time series, particularly after

intervention. Therefore, a logarithmic transform was applied to

the series, producing Figure 18.9. The 66-month pre-intervention

series was used to identify a seasonal ARIMA (0, 1, 1)(0, 1, 1)12

model, with differencing required at lags 1 and 12 to achieve 

stationarity.

The local moving average parameter was 0.58799 and the sea-

sonal parameter 0.55492, both statistically significant, with t =

7.41 and t = 11.81, p < .05 respectively. The intervention pa-

rameter (-0.06198), was strong and statistically significant, t =

-2.92, p > .05, R2 = .06. The antilog of the parameter (10-0.062)

was 0.87, suggesting that the impact of the seat belt law was a

13% reduction in mean number of incapacitating injuries per month.

With 3,802 injuries per month on average before the law, the

reduction is approximately 500 per month. Thus, the seat belt law

is shown to be effective in reducing incapacitating injuries.



18.8.1 SPSS Package

SPSS has a number of time-series procedures, only a few of which are relevant to the ARIMA mod-
els of this chapter. ACF produces autocorrelation and partial autocorrelation plots, CCF produces
cross-correlation plots, and TSPLOT produces the time-series plot itself. All of the plots are pro-
duced in high-resolution form; ACF and CCF plots also are shown in low-resolution form with
numerical values. This is the only program that permits alternative specification of standard errors
for autocorrelation plots, with an independence model possible (IND) as well as the usual Bartlett’s
approximation (MA) used by other programs.

SPSS ARIMA is available for modeling time series with a basic set of features. Several options
for iteration are available, as well as two methods of parameter estimation. Initial values for pa-
rameters can be specified, but there is no provision for centering the series (although the mean may
be subtracted in a separate transformation). There are built-in functions for a log (base 10 or natural)
transform of the series. Differencing is awkward for lag greater than 1. A differenced variable is cre-
ated, and then the differencing parameter is omitted from the model specification (along with the
constant). Residuals (and their upper and lower confidence values) and predicted values are auto-
matically written to the existing data file, and tests are available to compare models (log-likelihood,
AIC, and SBC).

18.8.2 SAS System

SAS ARIMA also is a full-featured modeling program, with three estimation methods as well as sev-
eral options for controlling the iteration process. SAS ARIMA has the most options for saving things
to data files. Inverse autocorrelation plots and (optionally) autocorrelation plots of residuals are
available in addition to the usual ACF, PACF, and cross-correlation plots that are produced by
default. However, a plot of the raw time series itself must be requested outside PROC ARIMA.

The autocorrelation checks for white noise and residuals are especially handy for diagnosing
a model, and models may be compared using AIC and SBC. Missing data are estimated under some
conditions.

18.8.3 SYSTAT System

Except for graphs and built-in transformations, SYSTAT SERIES is a bare bones program. The time-
series plot can be edited and annotated; however, ACF, PACF, and CCF plots have no numerical val-
ues. Maximum number of iterations and a convergence criterion can be specified. Iteration history is
provided, along with a final value of error variance. Other than that, only the parameter estimates,
standard errors, and 95% confidence interval are shown. There is no provision for intervention analy-
sis or any other input variables.

SYSTAT does differencing at lags greater than 1 in a manner similar to that of SPSS. Differ-
enced values are produced as a new variable (in a new file) and then the differenced values are used
in the model. Thus, forecast values are not in the scale of the original data, but in the scale of the dif-
ferenced values, making interpretation more difficult. SYSTAT does, however, provide a plot show-
ing values for the known (differenced) series as well as forecast values.
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TABLE 18.27 Comparison of SPSS, SAS, and SYSTAT Programs for ARIMA Time-Series Analysis

Feature

Input

Specify intervention variable

Specify additional continuous variable(s)

Include constant or not

Specify maximum number of iterations

Specify tolerance

Specify change in sum of squares

Parameter estimate stopping criterion

Specify maximum lambda

Specify delta

Define maximum number of psi weights

Conditional least squares estimation method

Unconditional estimation method

Maximum likelihood estimation method

Options regarding display of iteration details

User-specified initial values for AR and MA
parameters and constant

Request that mean be subtracted from each observation

Options for forecasting

Specify size of confidence interval

Erase current time-series model 

Use a previously defined model without respecification

Request ACF plot with options

Request PACF plot with options

Request cross-correlation plot with options

Request inverse autocorrelation plot

Request residual autocorrelation plots

Request log transforms of series

Request time series plot with options

Estimate missing data

Specify analysis by groups

Specify number of lags in plots

Specify method for estimating standard errors of
autocorrelations

Specify method for estimating variance

Request serach for outliers in the solution

Output

Number of observations or residuals (after differencing)

SPSS
ARIMA

Yes

No

Yes

MXITER

PAREPS

SSQPCT

No

MXLAMB

No

No

CLS

EXACT

No

Yes

Yes

No

Yes

CINPCT

No

APPLY

Yesa

Yesa

Yesb

No

No

Yes

Yesc

Nod

No

MXAUTOa

SERRORa

No

No

Yes

SAS 
ARIMA

Yes

Yes

Yes

MAXIT

SINGULAR

No

CONVERGE

No

DELTA

No

CLS

ULS

ML

PRINTALL

INITVAL

CENTER

Yes

ALPHA

CLEAR

No

Default

Default

Default

Default

PLOT

Noe

Nof

Yes

BY

NLAG

No

NODF

Yes

Yes

SYSTAT
SERIES

No

No

Yes

Yes

No

No

Yes

No

No

No

Yes

No

No

No

No

No

Yes

No

CLEAR SERIES

No

ACF

PACF

CCF

No

No

Yes

TPLOT

Yes

No

No

No

No

No

No
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TABLE 18.27 Continued

Feature

Output (continued)

Mean of observations (after differencing)

Standard deviation

t value of mean (against zero)

Numerical values of autocorrelations (and
partial autocorrelations) and standard errors

Probability value for autocorrelations

Covariances for autocorrelation plot

Autocorrelation check for white noise

Box-Ljung statistic

Model parameter estimates

Type of parameter

Standard error of parameter estimate

t ratio for parameter estimate

Significance value for t ratio

Confidence interval for parameter estimate

Residual sum of squares

Residual df

Residual mean square (variance)

Standard error of residuals

Autocorrelation check of residuals

Correlations among parameter estimates

Covariances among parameter estimates

Log-likelihood

AIC

SBC

Output data set

Residual time series

Predicted values for existing time series

95% upper and lower confidence interval of
predicted values

Standard errors of predicted values

Forecast values with options

Parameter estimates for a model

Diagnostic statistics for a model

SPSS 
ARIMA

No

No

No

Yes

Yes

No

No

Yes

B

Yes

SEB

T-RATIO

APPROX. PROB.

No

(adjusted)

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Default

Default

Default

Default

Yes

No

No

SAS 
ARIMA

Yes

Yes

No

Yes

No

Yes

Yes

No

Estimate

Yes

Approx. Std Error

T Ratio

Pr B
ÃÃ t

ÃÃ

No

No

No

Yes

Yes

Yes

Yes

No

No

Yes

Yes

RESIDUAL

FORECAST

L95, U95

STD

LEAD

OUTEST, OUTMODEL

OUTSTAT

SYSTAT
SERIES

No

No

No

No

No

No

No

No

Yes

Yes

A.S.E.

No

No

Yes

No

No

MSE

No

No

Yes

No

No

No

No

Yes

No

No

No

Yes

No

No

aDone through ACF procedure. bDone through CCF procedure.
cDone through TSPLOT. dDone through MVA.
eDone through DATA step. fDone through PROC GPLOT.


