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Abstract

The collaborative filtering (CF) approach to recommendeassrigcently enjoyed
much interest and progress. The fact that it played a cemtialvithin the recently
completed Netflix competition has contributed to its pogtyaThis chapter surveys
the recent progress in the field. Matrix factorization teghes, which became a first
choice for implementing CF, are described together witleméinnovations. We
also describe several extensions that bring competitigaracy into neighborhood
methods, which used to dominate the field. The chapter damades how to utilize
temporal models and implicit feedback to extend models raogyu In passing, we
include detailed descriptions of some the central methedsldped for tackling the
challenge of the Netflix Prize competition.

1 Introduction

Collaborative filtering (CF) methods produce user speci#icommendations of
items based on patterns of ratings or usage (e.g., purghaghsut need for ex-
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ogenous information about either items or users. While wathldished methods
work adequately for many purposes, we present severaltreggmsions available
to analysts who are looking for the best possible recommenrda

The Netflix Prize competition that began in October 2006 hated much re-
cent progress in the field of collaborative filtering. For fhist time, the research
community gained access to a large-scale, industrialgtinedata set of 200 million
movie ratings—attracting thousands of scientists, stiglemgineers and enthusi-
asts to the field. The nature of the competition has encodreay@d development,
where innovators built on each generation of techniquespoave prediction accu-
racy. Because all methods are judged by the same rigid yekast common data,
the evolution of more powerful models has been especidilyieft.

Recommender systems rely on various types of input. Mostezgent is high
quality explicit feedbackwhere users directly report on their interest in products.
For example, Netflix collects star ratings for movies andoliéers indicate their
preferences for TV shows by hitting thumbs-up/down buttons

Because explicit feedback is not always available, sonmmetenders infer user
preferences from the more abundamnplicit feedbackwhich indirectly reflect opin-
ion through observing user behavior [22]. Types of impliegdback include pur-
chase history, browsing history, search patterns, or eveasex movements. For
example, a user who purchased many books by the same autthatbpy likes that
author. This chapter focuses on models suitable for exfpéedback. Nonetheless,
we recognize the importance of implicit feedback, an egdgcvaluable informa-
tion source for users who do not provide much explicit feettb&lence, we show
how to address implicit feedback within the models as a s#agnsource of infor-
mation.

In order to establish recommendations, CF systems needat itevo funda-
mentally different entities: items and users. There are wmary approaches to
facilitate such a comparison, which constitute the two meahniques of CFthe
neighborhood approachndlatent factor modelsNeighborhood methods focus on
relationships between items or, alternatively, betweensug\n item-item approach
models the preference of a user to an item based on ratingsitdirsitems by the
same user. Latent factor models, such as matrix factovizdsika, SVD), comprise
an alternative approach by transforming both items andsusehe same latent fac-
tor space. The latent space tries to explain ratings by cteaiaing both products
and users on factors automatically inferred from user faeklb

Producing more accurate prediction methods requires degpé¢heir founda-
tions and reducing reliance on arbitrary decisions. In thiapter, we describe a
variety of recent improvements to the primary CF modelinthitéques. Yet, the
quest for more accurate models goes beyond this. At leastasiant is the identi-
fication of all the signals, or features, available in thead&onventional techniques
address the sparse data of user-item ratings. Accuradfisagly improves by also
utilising other sources of information. One prime examplgudes all kinds of tem-
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poral effects reflecting the dynamic, time-drifting natofeuser-item interactions.
No less important is listening to hidden feedback such ashitéms users chose to
rate (regardless of rating values). Rated items are natteelat random, but rather
reveal interesting aspects of user preferences, goingldeye@ numerical values of
the ratings.

Section 3 surveys matrix factorization techniques, whicinlsine implementa-
tion convenience with a relatively high accuracy. This haslenthem the preferred
technique for addressing the largest publicly availablaskt - the Netflix data.
This section describes the theory and practical detailindethose techniques. In
addition, much of the strength of matrix factorization misdgtems from their nat-
ural ability to handle additional features of the data, uidahg implicit feedback
and temporal information. This section describes in déteil to enhance matrix
factorization models to address such features.

Section 4 turns attention to neighborhood methods. Theclasthods in this
family are well known, and to a large extent are based on sisi Some recently
proposed techniques address shortcomings of neighbotbobdiques by suggest-
ing more rigorous formulations, thereby improving preidictaccuracy. We con-
tinue at Section 5 with a more advanced method, which usesgtghts of common
neighborhood methods, with global optimization techniiypical to factorization
models. This method allows lifting the limit on neighborldagize, and also address-
ing implicit feedback and temporal dynamics. The resuléinguracy is close to that
of matrix factorization models, while offering some praeatiadvantages.

Pushing the foundations of the models to their limits resealrprising links
among seemingly unrelated techniques. We elaborate oimt&isction 6 to show
that, at their limits, user-user and item-item neighbocthowodels may converge
to a single model. Furthermore, at that point, both beconuévalgnt to a simple
matrix factorization model. The connections reduce thevagice of some previous
distinctions such as the traditional broad categorizatibmatrix factorization as
“model based” and neighborhood models as “memory based”.

2 Preliminaries

We are given ratings fom users (aka customers) andtems (aka products). We
reserve special indexing letters to distinguish users fitems: for usersi, v, and
for itemsi, j,l. A ratingry; indicates the preference by useof itemi, where high
values mean stronger preference. For example, values datelgers ranging from
1 (star) indicating no interest to 5 (stars) indicating arsgrinterest. We distinguish
predicted ratings from known ones, by using the notatjpfof the predicted value
of ry;.

The scalatt,; denotes the time of rating,;. One can use different time units,
based on what is appropriate for the application at handekample, when time

is measured in days, they counts the number of days elapsed since some early

time point. Usually the vast majority of ratings are unknowor example, in the
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Netflix data 99% of the possible ratings are missing becauseatypically rates
only a small portion of the movies. THa, i) pairs for whichr;; is known are stored
in the set’#” = {(u,i) | ryi is known}. Each useu is associated with a set of items
denoted by Ru), which contains all the items for which ratings byre available.
Likewise, Ri) denotes the set of users who rated iterBometimes, we also use
a set denoted by (W), which contains all items for which provided an implicit
preference (items that he rented/purchased/watchedl, etc.

Models for the rating data are learnt by fitting the previgustbserved ratings.
However, our goal is to generalize those in a way that allosvsoupredict future,
unknown ratings. Thus, caution should be exercised to axa@ditting the observed
data. We achieve this by regularizing the learnt parametérese magnitudes are
penalized. Regularization is controlled by constants tvhie denoted ad, Az, ...
Exact values of these constants are determined by croskatiah. As they grow,
regularization becomes heavier.

2.1 Baseline predictors

CF models try to capture the interactions between users tantsithat produce
the different rating values. However, much of the obseratithg values are due to
effects associated with either users or items, indepehydehtheir interaction. A
principal example is that typical CF data exhibit large wsed item biases — i.e.,
systematic tendencies for some users to give higher ratagsothers, and for some
items to receive higher ratings than others.

We will encapsulate those effects, which do not involve 4i®en interaction,
within thebaseline predictorgalso known adiase$. Because these predictors tend
to capture much of the observed signal, it is vital to modehtraccurately. Such
modeling enables isolating the part of the signal that trajyresents user-item in-
teraction, and subjecting it to more appropriate user peefee models.

Denote byu the overall average rating. A baseline prediction for annamkn
ratingr; is denoted by, and accounts for the user and item effects:

by = p+ by +b 1)

The parameterk, andb; indicate the observed deviations of useand itemi, re-
spectively, from the average. For example, suppose thataméabaseline predictor
for the rating of the movie Titanic by user Joe. Now, say thatdverage rating over
all movies,, is 3.7 stars. Furthermore, Titanic is better than an aeenagyvie, so
it tends to be rated 0.5 stars above the average. On the athdr boe is a critical
user, who tends to rate 0.3 stars lower than the average, fheusaseline predictor
for Titanic’s rating by Joe would be 3.9 stars by calcula®ig— 0.3+ 0.5. In order
to estimateo, andb; one can solve the least squares problem

min (rui— M —by =00+ 21(3 b+ 5 b7).
b (ui)est u I
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Here, the first terng i c.» (fui — M + by + bi)? strives to findby's andb;’s that
fit the given ratings. The regularizing term+(s b2 + 5; b?) — avoids overfitting
by penalizing the magnitudes of the parameters. This |lepgtre problem can be
solved fairly efficiently by the method of stochastic gradidescent (described in
Subsection 3.1).

For the Netflix data the mean rating)(is 3.6. As for the learned user biasbg)(
their average is 0.044 with standard deviation of 0.41. Megage of their absolute
values (byl) is: 0.32. The learned item biasds)(average to -0.26 with a standard
deviation of 0.48. The average of their absolute valiia$ (s 0.43.

An easier, yet somewhat less accurate way to estimate thenpéers is by de-
coupling the calculation of thig’s from the calculation of thé,’s. First, for each
itemi we set
b — Suer(i)(fui—H)

' A +|R()

Then, for each userwe set

b — Yier(w) (rui— 1 —bi)
) As+[R(U)|

Averages are shrunk towards zero by using the regularizg@mametersio, Az,
which are determined by cross validation. Typical valuetheNetflix dataset are:
A2 =2513=10.

In Subsection 3.3.1, we show how the baseline predictordbeamproved by
also considering temporal dynamics within the data.

2.2 The Netflix data

In order to compare the relative accuracy of algorithms iilesd in this chapter,

we evaluated all of them on the Netflix data of more than 100gnidate-stamped

movie ratings performed by anonymous Netflix customers eetwNov 11, 1999

and Dec 31, 2005 [5]. Ratings are integers ranging betwee 5aThe data spans
17,770 movies rated by over 480,000 users. Thus, on avesagmvie receives

5600 ratings, while a user rates 208 movies, with substargréation around each
of these averages. To maintain compatibility with resuliblished by others, we
adopt some standards that were set by Netflix. First, quafiitiie results is usually
measured by the root mean squared error (RMSE):

\/ T (rui—fu)?/|TestSet
(u,i)

cTestSet

a measure that puts more emphasis on large errors compdtethevalternative of
mean absolute error. (Consider Chaf®for a comprehensive survey of alternative
evaluation metrics of recommender systems.)
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We report results on a test set provided by Netflix (also knesithe Quiz set),
which contains over 1.4 million recent ratings. Compareithie training data, the
test set contains many more ratings by users that do not tath and are therefore
harder to predict. In a way, this represents real requirésrfena CF system, which
needs to predict new ratings from older ones, and to equédltlyess all users, not
just the heavy raters.

The Netflix data is part of the Netflix Prize competition, wééhe benchmark
is Netflix’s proprietary system, Cinematch, which achieeeRMSE of 0.9514 on
the test set. The grand prize was awarded to a team that nthtagkive this
RMSE below 0.8563 (10% improvement) after almost threes/eéiextensive ef-
forts. Achievable RMSE values on the test set lie in a quitbm®ssed range, as
evident by the difficulty to win the grand prize. Nonetheldhere is evidence that
small improvements in RMSE terms can have a significant itngathe quality of
the top few presented recommendations [17, 19].

2.3 Implicit feedback

This chapter is centered on explicit user feedback. Notetbewhen additional
sources of implicit feedback are available, they can beaitqul for better under-
standing user behavior. This helps to combat data spasandsan be particularly
helpful for users with few explicit ratings. We describeengions for some of the
models to address implicit feedback.

For a dataset such as the Netflix data, the most natural cfaigmplicit feed-
back would probably be movie rental history, which tells hewt user preferences
without requiring them to explicitly provide their ratingsor other datasets, brows-
ing or purchase history could be used as implicit feedbadweéver, such data is
not available to us for experimentation. Nonetheless,adbsious kind of implicit
data does exist within the Netflix dataset. The dataset datesnty tell us the rating
values, but alsavhichmovies users rate, regardlesshofvthey rated these movies.
In other words, a user implicitly tells us about her prefeesnby choosing to voice
her opinion and vote a (high or low) rating. This creates atyirmatrix, where
“1” stands for “rated”, and “0” for “not rated”. While this bary data may not be
as informative as other independent sources of implicillieek, incorporating this
kind of implicit data does significantly improves predictiaccuracy. The benefit
of using the binary data is closely related to the fact thiiga are not missing at
random; users deliberately choose which items to rate (seérivet al. [21]).

3 Matrix factorization models

Latent factor models approach collaborative filtering vilie holistic goal to un-
cover latent features that explain observed ratings; ekesripclude pLSA [15],
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neural networks [24], Latent Dirichlet Allocation [7], amdodels that are induced
by factorization of the user-item ratings matrix (also kmoas SVD-based mod-
els). Recently, matrix factorization models have gainepytarity, thanks to their
attractive accuracy and scalability.

In information retrieval, SVD is well established for idéying latent semantic
factors [9]. However, applying SVD to explicit ratings iretF domain raises dif-
ficulties due to the high portion of missing values. Convamai SVD is undefined
when knowledge about the matrix is incomplete. Moreovergleasly addressing
only the relatively few known entries is highly prone to ditting. Earlier works
relied on imputation [16, 26], which fills in missing ratingsd makes the rating ma-
trix dense. However, imputation can be very expensive agiiifgcantly increases
the amount of data. In addition, the data may be considewdibtgrted due to in-
accurate imputation. Hence, more recent works [4, 6, 1023724, 28] suggested
modeling directly only the observed ratings, while avogoverfitting through an
adequate regularized model.

In this section we describe several matrix factorizatiamtéques, with increas-
ing complexity and accuracy. We start with the basic modeS¥D". Then, we
show how to integrate other sources of user feedback in todecrease prediction
accuracy, through the “SVD++ model”. Finally we deal witle tfact that customer
preferences for products may drift over time. Product gafoa and popularity are
constantly changing as new selection emerges. Similar§tomer inclinations are
evolving, leading them to ever redefine their taste. Thiddda a factor model that
addresses temporal dynamics for better tracking user b@hav

3.1 SVD

Matrix factorization models map both users and items toat jaitent factor space
of dimensionalityf, such that user-item interactions are modeled as inneuptsd
in that space. The latent space tries to explain ratings byacterizing both prod-
ucts and users on factors automatically inferred from usediback. For example,
when the products are movies, factors might measure obvdimoensions such as
comedy vs. drama, amount of action, or orientation to caiiditess well defined
dimensions such as depth of character development or ‘igesk”; or completely
uninterpretable dimensions.

Accordingly, each iteni is associated with a vectoy € Rf, and each useris
associated with a vectqy, € R. For a given item, the elements ofi measure the
extent to which the item possesses those factors, posttinvegative. For a given
useru, the elements op, measure the extent of interest the user has in items that
are high on the corresponding factors (again, these may &iévgoor negative).
The resulting dot productg/ py, captures the interaction between usend item
i—i.e., the overall interest of the user in characteristicgefitem. The final rating

1 Recall that the dot product between two vectarse R is defined asxy = ZLle'Yk
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is created by also adding in the aforementioned baselirtBqtoes that depend only
on the user or item. Thus, a rating is predicted by the rule

Fui = M+ bi +by+qf pu. )

In order to learn the model parametelsg, bi, py andg;) we minimize the regu-
larized squared error

min S (rui— K —bi —by— g pu)®+Aa(bf + 05+ [[ai >+ [l pull?)
bGP 2

The constanf4, which controls the extent of regularization, is usuallyetdmined
by cross validation. Minimization is typically performegt bither stochastic gradi-
ent descent or alternating least squares.

Alternating least squares techniques rotate between filRag,’s to solve for the
gi’s and fixing theg;’s to solve for thep,’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and cappiienally solved; see
[2, 4].

An easy stochastic gradient descent optimization was jpoged by Funk [10]
and successfully practiced by many others [17, 23, 24, 28 dlgorithm loops
through all ratings in the training data. For each givemati,;, a prediction ;)

. . .. def PR .

is made, and the associated prediction eepE ry; — fy; is computed. For a given
training case;, we modify the parameters by moving in the opposite directib
the gradient, yielding:

by < by + Y- (€ui —As-by)
bi < bj +y- (eui—As-bi)
Gi < Gi+ V- (& Pu—As-G)
Pu < Pu+Y-(eui-Gi— Az pu)

When evaluating the method on the Netflix data, we used thedolly values for
the meta parameteng:= 0.005 A4 = 0.02. Henceforth, we dub this method “SVD".

A general remark is in place. One can expect better accuradgdicating sepa-
rate learning rateg/ and regularizationX) to each type of learned parameter. Thus,
for example, it is advised to employ distinct learning rdtesser biases, item biases
and the factors themselves. A good, intensive use of sudlategy is described in
Takacs et al. [29]. When producing exemplary results for thigptéra we did not
use such a strategy consistently, and in particular mangiefjiven constants are
not fully tuned.

3.2 SVD++

Prediction accuracy is improved by considering also inifpleedback, which pro-
vides an additional indication of user preferences. Thispecially helpful for those
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users that provided much more implicit feedback than eipice. As explained
earlier, even in cases where independent implicit feedizeksent, one can cap-
ture a significant signal by accounting for which items usats, regardless of their
rating value. This led to several methods [17, 23, 25] thadeted a user factor by
the identity of the items he/she has rated. Here we focuseo8Wb++ method [17],
which was shown to offer accuracy superior to SVD.

To this end, a second set of item factors is added, relatioly kami to a factor
vectory; € Rf. Those new item factors are used to characterize users basbe
set of items that they rated. The exact model is as follows:

Fui =M +Dbi+by+a (puﬂR(U)_% Z Yj> ®3)
j€R(u)

The set Ru) contains the items rated by user

Now, a useu is modeled ap, + |R(u)\*% Y ier@) Yj- We use a free user-factors
vector, py, much like in (2), which is learnt from the given explicit iregs. This
vector is complemented by the sqm(u)r% Y jer(u) Yj» which represents the per-
spective of implicit feedback. Since tlyg's are centered around zero (by the reg-

ularization), the sum is normalized tbl}((u)r%, in order to stabilize its variance
across the range of observed value§Rii)|

Model parameters are determined by minimizing the assatia¢gularized
squared error function through stochastic gradient dés@énloop over all known
ratings in.#", computing:

o by by+y (eui—As-by)
o b+ bi+y-(ey—As-by) .
e G < Gi+V (e (Put N2 jcrw)Yi) —Ae i)
® Py Puty:(€ui-Gi—As Pu)
e VjieR(u):
1
Yi < Yj+y- (e [R(U)|T2 -0 —As-Yj)

When evaluating the method on the Netflix data, we used thesoil values for
the meta parameterg= 0.007, A5 = 0.005, Ag = 0.015. It is beneficial to decrease
step sizes (thg’s) by a factor of 0.9 after each iteration. The iterativeqa®s runs
for around 30 iterations until convergence.

Several types of implicit feedback can be simultaneousiso@tuced into the
model by using extra sets of item factors. For example, if er ushas a certain
kind of implicit preference to the items ini{u) (e.g., she rented them), and a dif-
ferent type of implicit feedback to the items irf{\) (e.g., she browsed them), we
could use the model

N _1 _1
fu=ptbrbud | Pt N2 S PN 5y @)
JeNH(u) JENZ(u)
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The relative importance of each source of implicit feedbailkbe automatically
learned by the algorithm by its setting of the respective@siof model parameters.

3.3 Time-aware factor model

The matrix-factorization approach lends itself well to ralidg temporal effects,
which can significantly improve its accuracy. Decomposiatings into distinct
terms allows us to treat different temporal aspects seggr&pecifically, we iden-
tify the following effects that each vary over time: (1) udsasesh,(t), (2) item
biasesh(t), and (3) user preferences(t). On the other hand, we specify static
item characteristicgy;, because we do not expect significant temporal variation for
items, which, unlike humans, are static in nature. We stiint avdetailed discussion

of the temporal effects that are contained within the basgdredictors.

3.3.1 Time changing baseline predictors

Much of the temporal variability is included within the bése predictors, through
two major temporal effects. The first addresses the factahatem’s popularity
may change over time. For example, movies can go in and oubjfdlprity as
triggered by external events such as the appearance of@riraatnew movie. This
is manifested in our models by treating the item baas a function of time. The
second major temporal effect allows users to change theéalioe ratings over time.
For example, a user who tended to rate an average movie ‘&' staay now rate
such a movie “3 stars”. This may reflect several factors iiclg a natural drift in a
user’s rating scale, the fact that ratings are given inilahip to other ratings that
were given recently and also the fact that the identity oféter within a household
can change over time. Hence, in our models we take the pagalmeds a function
of time. This induces a template for a time sensitive basginedictor foru's rating
of i at dayty;:

bui = p = by (tui) + bi (tui) (5)

Here,b,(-) andb;(-) are real valued functions that change over time. The exact
way to build these functions should reflect a reasonable wayatameterize the
involving temporal changes. Our choice in the context ofrtfavie rating dataset
demonstrates some typical considerations.

A major distinction is between temporal effects that spatered periods of
time and more transient effects. In the movie rating casedeovaot expect movie
likeability to fluctuate on a daily basis, but rather to chawoger more extended pe-
riods. On the other hand, we observe that user effects calgetan a daily basis,
reflecting inconsistencies natural to customer behavius fequires finer time res-
olution when modeling user-biases compared with a lowesluéisn that suffices
for capturing item-related time effects.
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We start with our choice of time-changing item biabgs). We found it adequate
to split the item biases into time-based bins, using a coh@tam bias for each time
period. The decision of how to split the timeline into binesld balance the desire
to achieve finer resolution (hence, smaller bins) with thedrfer enough ratings per
bin (hence, larger bins). For the movie rating data, theaengle variety of bin sizes
that yield about the same accuracy. In our implementatiach &in corresponds to
roughly ten consecutive weeks of data, leading to 30 binarspg all days in the
dataset. A day is associated with an integer Bin (a number between 1 and 30 in
our data), such that the movie bias is split into a statiopary and a time changing
part

bi(t) = bi +Db; gint) - (6)

While binning the parameters works well on the items, it is enoira challenge
on the users side. On the one hand, we would like a finer résolédr users to
detect very short lived temporal effects. On the other hevadjo not expect enough
ratings per user to produce reliable estimates for isolatesl Different functional
forms can be considered for parameterizing temporal udeavder, with varying
complexity and accuracy.

One simple modeling choice uses a linear function to captyressible gradual
drift of user bias. For each userwe denote the mean date of ratingthyNow, if u
rated a movie on daty then the associated time deviation of this rating is defased

dew(t) = signt —tu) - [t *tu‘ﬁ :

Here|t —t,| measures the number of days between dateslt,. We set the value
of B by cross validation; in our implementatigh = 0.4. We introduce a single
new parameter for each user calleglso that we get our first definition of a time-
dependent user-bias

b (t) = by + ay - deu(t). (7)

This simple linear model for approximating a drifting belwwequires learning
two parameters per usdy; anday.

A more flexible parameterization is offered by splines. lLbe a user associated
with ny ratings. We designate time points {ty', ...t } —spaced uniformly across
the dates olr's ratings as kernels that control the following function:

zru 1e—0\t—t| ‘btlj (8)
zku g olt-t|

b (t) = by +

The parameteris! are associated with the control points (or, kernels), andato-
matically learned from the data. This way the user bias iméat as a time-weighted
combination of those parameters. The number of controltpdin, balances flexi-
bility and computational efficiency. In our application velg,=nJ-2°, letting it grow
with the number of available ratings. The constardetermines the smoothness of
the spline; we setr=0.3 by cross validation.
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So far we have discussed smooth functions for modeling tke higs, which
mesh well withgradual concept driftHowever, in many applications there @ed-
den driftsemerging as “spikes” associated with a single day or sess@rexample,
in the movie rating dataset we have found that multiple gtia user gives in a sin-
gle day, tend to concentrate around a single value. SucHext eéed not span more
than a single day. The effect may reflect the mood of the us¢dthy, the impact of
ratings given in a single day on each other, or changes indtualarater in multi-
person accounts. To address such short lived effects, vignassingle parameter
per user and day, absorbing the day-specific variabilitys parameter is denoted
by by,t. Notice that in some applications the basic primitive tinmé to work with
can be shorter or longer than a day.

In the Netflix movie rating data, a user rates on 40 differemtsdon average.
Thus, working withb,t requires, on average, 40 parameters to describe each user
bias. It is expected thdi,; is inadequate as a standalone for capturing the user bias,
since it misses all sorts of signals that span more than desitay. Thus, it serves
as an additive component within the previously describégses. The time-linear
model (7) becomes

bt (t) = by + ay - dewy(t) + by . )

Similarly, the spline-based model becomes

Z:(ilefo‘tft'ulbﬁ

b{" (t) = by + .
S e oIt

+byg . (10)

A baseline predictor on its own cannot yield personalizedmemendations, as
it disregards all interactions between users and itemssknae, it is capturing the
portion of the data that is less relevant for establishimgmmendations. Nonethe-
less, to better assess the relative merits of the variousehof time-dependent
user-bias, we compare their accuracy as standalone pregitt order to learn the
involved parameters we minimize the associated regulhsgeared error by using
stochastic gradient descent. For example, in our actudeimgntation we adopt
rule (9) for modeling the drifting user bias, thus arrivirtglae baseline predictor

bui = 1+ by + ay - devy(tyi) + byt +bi + bi,Bin(tui) . (11)
To learn the involved parametets,, ay, by, bi andbi‘Bin(t), one should solve
min S (rui— K — by — audev; (tui) — bug, —bi = b gingi,p))?

(uhex
+A7(02+ a2+ bﬁ,tui +bf+ bﬁBin(tui)) .

Here, the first term strives to construct parameters thahditgiven ratings. The
regularization terml7(bZ + .. .), avoids overfitting by penalizing the magnitudes of
the parameters, assuming a neutral O prior. Learning is bipraestochastic gradient
descent algorithm running 20-30 iterations, with= 0.01.
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model |static/mov |linearspling|linear+spline+
RMSE|.9799.9771.9731.9714].9605 |-9603 |

Table1 Comparing baseline predictors capturing main movie and usesteffés temporal mod-
eling becomes more accurate, prediction accuracy improvweeiiog RMSE).

Table 1 compares the ability of various suggested basefidigiors to explain
signal in the data. As usual, the amount of captured signakigsured by the root
mean squared error on the test set. As a reminder, test aasedater in time than
the training cases for the same user, so predictions ofterivie extrapolation in
terms of time. We code the predictors as follows:

e static no temporal effectdi = u + by +b;.

e moy accounting only for movie-related temporal effedig:= 1+ by +bj +
bi gin 1)

e linear , linear modeling of user biaseby; = 1 + by + ay - dewy(ty) + bi +
b1 Bin(t,)-

zrileigltmitlu‘btlf

zlkule*fmui*H [

e spling spline modeling of user biasels; = u + by + + b +

bi Bin(t,)- )

e linear+, linear modeling of user biases and single day effegt= u+by+ay-
devy(tui) + bu g, +bi + b gingy) -

e spline+, spline modeling of user biases and single day efflegt= u + b, +
z:‘il e*U\tui*dl \b(U

L+ bu,tui + bi + bi,Bin(tui)-

zrilefa\‘uiﬂ [
The table shows that while temporal movie effects residehen data (lowering
RMSE from 0.9799 to 0.9771), the drift in user biases is mudneninfluential.
The additional flexibility of splines at modeling user etfelzads to better accuracy
compared to a linear model. However, sudden changes in iss&shwhich are cap-
tured by the per-day parameters, are most significant. thdeen including those
changes, the difference between linear modeling (“lindaand spline modeling
(“spline+”) virtually vanishes.

Beyond the temporal effects described so far, one can ussathe methodol-
ogy to capture more effects. A primary example is capturiagaalic effects. For
example, some products may be more popular in specific seasamear certain
holidays. Similarly, different types of television or radihows are popular through-
out different segments of the day (known as “dayparting&ridtlic effects can be
found also on the user side. As an example, a user may haeeethiffattitudes or
buying patterns during the weekend compared to the workeekwA way to model
such periodic effects is to dedicate a parameter for the gatibns of time periods
with items or users. This way, the item bias of (6), becomes

bi (t) = bi +b; gin(t) + bi periodt) -

For example, if we try to capture the change of item bias withdeason of the year,
then periodt) € {fall, winter, spring summet. Similarly, recurring user effects may
be modeled by modifying (9) to be
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by(t) = by + ay-dew(t) + byt + By periodt) -

However, we have not found periodic effects with a signiftgaredictive power
within the movie-rating dataset, thus our reported regldtaot include those.
Another temporal effect within the scope of basic preditisr related to the
changing scale of user ratings. Whiigt) is a user-independent measure for the
merit of itemi at timet, users tend to respond to such a measure differently. For
example, different users employ different rating scaled,asingle user can change
his rating scale over time. Accordingly, the raw value ofthevie bias is not com-
pletely user-independent. To address this, we add a tirperdkent scaling feature
to the baseline predictors, denoted &yt). Thus, the baseline predictor (11) be-
comes

bui — IJ + bu + au . dew (tu|) + bu:tui + (b| + bi,Bin(tui)) . Cu(tw) . (12)

All discussed ways to implemei,(t) would be valid for implementing,(t) as
well. We chose to dedicate a separate parameter per dayjtimgsn: c,(t) =
Cu+Cut. As usual,cy is the stable part of,(t), whereag,; represents day-specific
variability. Adding the multiplicative factocy(t) to the baseline predictor lowers
RMSE to 0.9555. Interestingly, this basic model, which oegd just main effects
disregarding user-item interactions, can explain almeshach of the data variabil-
ity as the commercial Netflix Cinematch recommender systghgse published
RMSE on the same test set is 0.9514 [5].

3.3.2 Timechanging factor model

In the previous subsection we discussed the way time affexgsline predictors.
However, as hinted earlier, temporal dynamics go beyorg] they also affect user
preferences and thereby the interaction between userseansl.iUsers change their
preferences over time. For example, a fan of the “psycho@dghrillers” genre
may become a fan of “crime dramas” a year later. Similarlynaos change their
perception on certain actors and directors. This type ofudiem is modeled by
taking the user factors (the vectpy) as a function of time. Once again, we need to
model those changes at the very fine level of a daily basidevi&cing the built-
in scarcity of user ratings. In fact, these temporal effectésthe hardest to capture,
because preferences are not as pronounced as main effetb{ases), but are split
over many factors.

We modeled each component of the user preferepgés’ = (pui(t),. .., pus(t))
in the same way that we treated user biases. Within the nratiieg dataset, we have
found modeling after (9) effective, leading to

Puk(t) = Puk+ Quk-dewy(t) + pue k=1,...,f. (13)
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Here pyk captures the stationary portion of the factoyy - dev,(t) approximates a
possible portion that changes linearly over time, gggk absorbs the very local,
day-specific variability.

At this point, we can tie all pieces together and extend thB-&Wfactor model
by incorporating the time changing parameters. The regpitiodel will be denoted
astimeSVD++ where the prediction rule is as follows:

fui= 1+ Db (tui)+bu(tui)+qi-r (pu(tui)+ |R(U)‘7% Z yj) (14)
JER(u)

The exact definitions of the time drifting parametérg),by(t) and py(t) were
given in (6), (9) and (13). Learning is performed by minimigithe associated
squared error function on the training set using a reguddriztochastic gradient
descent algorithm. The procedure is analogous to the oradving the original
SVD++ algorithm. Time complexity per iteration is still Bar with the input size,
while wall clock running time is approximately doubled ccemgd to SVD++, due
to the extra overhead required for updating the temporarpaters. Importantly,
convergence rate was not affected by the temporal paramegten, and the pro-
cess converges in around 30 iterations.

3.4 Comparison

In Table 2 we compare results of the three algorithms diszlgsthis section. First
is SVD, the plain matrix factorization algorithm. Seconslthe SVD++ method,
which improves upon SVD by incorporating a kind of impliciefdback. Finally is
timeSVD++, which accounts for temporal effects. The threthods are compared
over a range of factorization dimensionf.(All benefit from a growing number
of factor dimensions that enables them to better exprespleanmovie-user in-
teractions. Note that the number of parameters in SVD++ isparable to their
number in SVD. This is because SVD++ adds only item factotsleacomplex-
ity of our dataset is dominated by the much larger set of usgmsthe other hand,
timeSVD++ requires a significant increase in the number cdipaters, because of
its refined representation of each user factor. Addressimiicit feedback by the
SVD++ model leads to accuracy gains within the movie ratiataset. Yet, the im-
provement delivered by timeSVD++ over SVD++ is consistentbre significant.
We are not aware of any single algorithm in the literature tiwauld deliver such
accuracy. Further evidence of the importance of captugngpbral dynamics is the
fact that a timeSVD++ model of dimension 10 is already moreueate than an
SVD model of dimension 200. Similarly, a timeSVD++ model ahénsion 20 is
enough to outperform an SVD++ model of dimension 200.
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Model f=10| f=20| f=50| f=100 f=200
SVD .9140.9074.904§ .9025| .9009
SVD++ .9131.9032.8957 .8924] .8911
timeSVD++.8971.8891/.8824 .8805| .8799
Table 2 Comparison of three factor models: prediction accuracy is meadwdRMSE (lower
is better) for varying factor dimensionality ). For all models, accuracy improves with growing
number of dimensions. SVD++ improves accuracy by incorporatimgjicit feedback into the
SVD model. Further accuracy gains are achieved by also addyebsitemporal dynamics in the
data through the timeSVD++ model.

3.4.1 Predicting future days

Our models include day-specific parameters. An apparerdtignewould be how
these models can be used for predicting ratings in the futuraew dates for which
we cannot train the day-specific parameters? The simpleanswhat for those
future (untrained) dates, the day-specific parameterddiake their default value.
In particular for (12)cy(tyi) is set tocy, andbyy, is set to zero. Yet, one wonders,
if we cannot use the day-specific parameters for predictinduture, why are they
good at all? After all, prediction is interesting only wherisi about the future. To
further sharpen the question, we should mention the fac¢tttieaNetflix test sets
include many ratings on dates for which we have no othergdiinthe same user
and hence day-specific parameters cannot be exploited.

To answer this, notice that our temporal modeling makes tewrgat to capture
future changes. All it is trying to do is to capture transirmporal effects, which
had a significant influence on past user feedback. When suetiefire identified
they must be tuned down, so that we can model the more endsigmgl. This
allows our model to better capture the long-term charagttesi of the data, while
letting dedicated parameters absorb short term fluctustieor example, if a user
gave many higher than usual ratings on a particular singlealat models discount
those by accounting for a possible day-specific good mood;hwdoes not reflects
the longer term behavior of this user. This way, the day-§jpgrarameters accom-
plish a kind of data cleaning, which improves predictionufife dates.

3.5 Summary

In its basic form, matrix factorization characterizes bit¢ims and users by vectors
of factors inferred from patterns of item ratings. High espondence between item
and user factors leads to recommendation of an item to allsese methods deliver
prediction accuracy superior to other published collatdagdiltering techniques. At
the same time, they offer a memory efficient compact modeighwvban be trained
relatively easy. Those advantages, together with the img@héation ease of gradient
based matrix factorization model (SVD), made this the mettfachoice within the
Netflix Prize competition.

What makes these techniques even more convenient is thiitly edboaddress sev-
eral crucial aspects of the data. First, is the ability tegnate multiple forms of user
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feedback. One can better predict user ratings by also abgesther related actions
by the same user, such as purchase and browsing history.ropesed SVD++
model leverages multiple sorts of user feedback for imprgwiser profiling.

Another important aspect is the temporal dynamics that makes’ tastes evolve
over time. Each user and product potentially goes throughstndt series of
changes in their characteristics. A mere decay of oldeait®s cannot adequately
identify communal patterns of behavior in time changingaddthe solution we
adopted is to model the temporal dynamics along the whole period, allowing
us to intelligently separate transient factors from lastines. The inclusion of tem-
poral dynamics proved very useful in improving quality oégictions, more than
various algorithmic enhancements.

4 Neighborhood models

The most common approach to CF is based on neighborhood sn@tiehpter??
provides an extensive survey on this approach. Its origorah, which was shared
by virtually all earlier CF systems, is user-user based;[$égfor a good analy-
sis. User-user methods estimate unknown ratings basedordesl ratings of like-
minded users.

Later, an analogous item-item approach [20, 27] becamelaopu those meth-
ods, a rating is estimated using known ratings made by thes sgar on simi-
lar items. Better scalability and improved accuracy makeitm-item approach
more favorable in many cases [2, 27, 28]. In addition, itéemimethods are more
amenable to explaining the reasoning behind predictiohs i§ because users are
familiar with items previously preferred by them, but do kabw those allegedly
like-minded users. We focus mostly on item-item approachasthe same tech-
nigues can be directly applied within a user-user approaeh; also Subsection
5.2.2.

In general, latent factor models offer high expressiveitghtib describe various
aspects of the data. Thus, they tend to provide more accrgstdts than neigh-
borhood models. However, most literature and commercistesys (e.g., those of
Amazon [20] and TiVo [1]) are based on the neighborhood modéie prevalence
of neighborhood models is partly due to their relative sioigl. However, there are
more important reasons for real life systems to stick wittsthmodels. First, they
naturally provide intuitive explanations of the reasonipahind recommendations,
which often enhance user experience beyond what improvadaxy may achieve.
(More on explaining recommendations appears in Ch&?fesf this book.) Sec-
ond, they can provide immediate recommendations based wly eatered user
feedback.

The structure of this section is as follows. First, we désehow to estimate the
similarity between two items, which is a basic building tlHad most neighborhood
techniques. Then, we move on to the widely used similarityeld neighborhood
method, which constitutes a straightforward applicatibthe similarity weights.
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We identify certain limitations of this similarity basedmpach. As a consequence,
in Subsection 4.3 we suggest a way to solve these issuesbthienproving predic-
tion accuracy at the cost of a slight increase in computdiioe.

4.1 Similarity measures

Central to most item-item approaches is a similarity measatween items. Fre-
quently, it is based on the Pearson correlation coefficigntwhich measures the
tendency of users to rate iternand j similarly. Since many ratings are unknown,
some items may share only a handful of common observed rateesempirical
correlation coefficientp;, is based only on the common user support. It is advised
to work with residuals from the baseline predictors (Hges; see Section 2.1) to
compensate for user- and item-specific deviations. Thugppeoximated correla-
tion coefficient is given by

B = Sueui,j) (Fui = bui) (ruj — buj)
1 — .
\/Zueu(i,j)(fui —bui)?- Yueu,j) (ruj — buj)?

(15)

The set Ui, j) contains the users who rated both iteinasid j.

Because estimated correlations based on a greater usersappmore reliable,
an appropriate similarity measure, denotedsbyis a shrunk correlation coefficient
of the form

def Mj—1

Si = Nij —1+A8PIJ.
The variablen;; = |U(i, j)| denotes the number of users that rated bathd j. A
typical value forAg is 100.

Such shrinkage can be motivated from a Bayesian perspesteeSection 2.6
of Gelman et al. [11]. Suppose that the tiye are independent random variables
drawn from a normal distribution,

(16)

pij ~ N(0,7%)

for known 2. The mean of 0 is justified if thby; account for both user and item
deviations from average. Meanwhile, suppose that

pijlp ~ N(pij, o)
for known aﬁ. We estimatep;; by its posterior mean:

T213i j
2+ 07

E(pij|6ij) =

the empirical estimatq®;; shrunk a fractioncrﬁ/(r2 + oﬁ), of the way toward zero.
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Formula (16) follows from approximating the variance of aretation byaﬁ =
1/(nij — 1), the value forp;; near 0.

Notice that the literature suggests additional altereatior a similarity measure
[27, 28].

4.2 Similarity-based interpolation

Here we describe the most popular approach to neighborhodeéling, and appar-
ently also to CF in general. Our goal is to predigt— the unobserved rating by user
u for itemi. Using the similarity measure, we identify thdtems rated by that
are most similar ta. This set ofk neighbors is denoted by§;u). The predicted
value ofr; is taken as a weighted average of the ratings of neighbadengsi, while
adjusting for user and item effects through the baselindigi@rs

Caer s (i — b
i — bu Y jesk(iu) Si (uj . uj) . (17)
2 jesk(iu) Sij

Note the dual use of the similarities for both identificatadmearest neighbors and
as the interpolation weights in equation (17).

Sometimes, instead of relying directly on the similarityigies as interpolation
coefficients, one can achieve better results by transfarthiese weights. For exam-
ple, we have found at several datasets that squaring thel@tion-based similarities

e 2 (ryi—byi
is helpful. This leads to a rule likey = by + % Toscher et al. [31]
jesK(izu) T

discuss more sophisticated transformations of these weeigh
Similarity-based methods became very popular becauseateintuitive and
relatively simple to implement. They also offer the follogitwo useful properties:

1. Explainability. The importance of explaining automated recommendations is
widely recognized [13, 30]; see also Chap?@r Users expect a system to give
a reason for its predictions, rather than present “black becommendations.
Explanations not only enrich the user experience, but aisowage users to
interact with the system, fix wrong impressions and imprareterm accu-
racy. The neighborhood framework allows identifying whighthe past user
actions are most influential on the computed prediction.

2. New ratingsltem-item neighborhood models can provide updated recammme
dations immediately after users enter new ratings. Thides handling new
users as soon as they provide feedback to the system, witleealing to re-
train the model and estimate new parameters. This assumeretationships
between items (thg;j values) are stable and barely change on a daily basis.
Notice that for items new to the system we do have to learn reearpeters. In-
terestingly, this asymmetry between users and items megtlesith common
practices: systems need to provide immediate recommemndatd new users
(or new ratings by old users) who expect quality service. l@ndather hand, it
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is reasonable to require a waiting period before recomnmgritms new to the
system.

However, standard neighborhood-based methods raise smmeros:

1. The similarity function g;), which directly defines the interpolation weights,
is arbitrary. Various CF algorithms use somewhat diffesémilarity measures,
trying to quantify the elusive notion of user- or item-sianity. Suppose that a
particular item is predicted perfectly by a subset of thghkors. In that case,
we would want the predictive subset to receive all the weighit that is impos-
sible for bounded similarity scores like the Pearson cati@h coefficient.

2. Previous neighborhood-based methods do not accountimactions among
neighbors. Each similarity between an iteand a neighboj € SX(i; u) is com-
puted independently of the content df(Bu) and the other similaritiesy for
| € S¢(i;u) — {j}. For example, suppose that our items are movies, and the
neighbors set contains three movies that are highly ceeehaith each other
(e.g., sequels such as “Lord of the Rings 1-3"). An algorithat ignores the
similarity of the three movies when determining their ipt@ation weights,
may end up essentially triple counting the information jled by the group.

3. By definition, the interpolation weights sum to one, whiohy cause overfit-
ting. Suppose that an item has no useful neighbors rated bytigydar user. In
that case, it would be best to ignore the neighborhood irdion, staying with
the more robust baseline predictors. Nevertheless, timelatd neighborhood
formula uses a weighted average of ratings for the uninfavmaeighbors.

4. Neighborhood methods may not work well if variability atings differs sub-
stantially among neighbors.

Some of these issues can be fixed to a certain degree, whidesodine more
difficult to solve within the basic framework. For examplee tthird item, dealing
with the sum-to-one constraint, can be alleviated by udiegfollowing prediction
rule:

Y jeskiizu) Si (fuj — buj)

Ao+ 2 jes(iu) Si
The constandg penalizes the neighborhood portion when there is not muighne
borhood information, e.g., Whep ..y Sij < Ae. Indeed, we have found that set-
ting an appropriate value @b leads to accuracy improvements over (17). Nonethe-
less, the whole framework here is not justified by a formal ediothus, we strive for
better results with a more fundamental approach, as weildesnrthe following.

Fui = bui + (18)

4.3 Jointly derived interpolation weights

In this section we describe a more accurate neighborhoodehtbdt overcomes
the difficulties discussed above, while retaining knownitaaf item-item models.
As above, we use the similarity measure to define neighbaredoh prediction.
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However, we search for optimum interpolation weights withegard to values of
the similarity measure.

Given a set of neighborsks;u) we need to comput@nterpolation weights
{65li € S¥(i;u)} that enable the best prediction rule of the form

fui = bui + 8y (ruj —buj) - (19)
jes (i)

Typical values ok (number of neighbors) lie in the range of 20-50; see [2]. Dur-
ing this subsection we assume that baseline predictorsdieeady been removed.

Hence, we introduce a notation for the residual ratiz.gsdgrui —hyj. For notational
convenience assume that the items'iti ) are indexed by 1.. k.

We seek a formal computation of the interpolation weightg #tems directly
from their usage within prediction rule (19). As explaineatler, it is important
to derive all interpolation weights simultaneously to agaiofor interdependencies
among the neighbors. We achieve these goals by defining abuibptimization
problem.

4.3.1 Formal mode

To start, we consider a hypothetical dense case, wheresai$ betu rated both and
all its neighbors in Xi; u). In that case, we could learn the interpolation weights by
modeling the relationships between itéend its neighbors through a least squares

problem
2

ngiun; z— ; iz | - (20)
VAU JISSH(RY)

Notice that the only unknowns here are #gs. The optimal solution to the least
squares problem (20) is found by differentiation as a sofutif a linear system
of equations. From a statistics viewpoint, it is equivakenthe result of a linear re-
gression (without intercept) af; on thezj for j € S¥(i;u). Specifically, the optimal
weights are given by

Aw=b. (21)

Here,w € RX is an unknown vector such thet stands for the sought coefficient
6. Ais ak x k matrix defined as

Aj = ;ZVJZVL (22)
V£U

Similarly the vectoib € R¥ is given by

b; = ;Zvjzvi- (23)
V£U
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For a sparse ratings matrix there are likely to be very fewsusbo rated and all its
neighbors &(i;u). Accordingly, it would be unwise to bageandb as given in (22)—
(23) only on users with complete data. Even if there are ehosgrs with complete
data forA to be nonsingular, that estimate would ignore a large ptapoof the
information about pairwise relationships among ratingsheysame user. However,
we can still estimaté andb, up to the same constant, by averaging over the given
pairwise support, leading to the following reformulation:

—  Dveu(jh dju

A= =——""——— (24)
. [SISEN

E 2vel(i) L (25)

: UG, j)l

As a reminder, Uj, 1) is the set of users who rated bgtlandl. B

This is still not enough to overcome the sparseness issueelEments ofy;
or b; may differ by orders of magnitude in terms of the number ofrsisecluded
in the average. As discussed previously, averages baseglaiively low support
(small values ofU(j,1)|) can generally be improved by shrinkage towards a com-
mon value. Specifically, we compute a baseline value thagfined by taking the
average of all possibla; values. Let us denote this baseline valuealoy its pre-
cise computation is described in the next subsection. Aliegly, we define the
correspondings x k matrix A and the vectob € RX:

U(j,1)|- Ay +B-avg

o N VARIEY: (2
- |U(i,})|-by +-avg
N V(N)IES: @)

The parametefl controls the extent of the shrinkage. A typical value woudd b
B = 500. A A

Our best estimate foh andb are A andb, respectively. Therefore, we modify
(21) so that the interpolation weights are defined as thdisalof the linear system

Aw=Db. (28)

The resulting interpolation weights are used within (199ider to predict;.

This method addresses all four concerns raised in Subeetti First, inter-
polation weights are derived directly from the ratings, based on any similarity
measure. Second, the interpolation weights formula eiigleccounts for relation-
ships among the neighbors. Third, the sum of the weightstisastrained to equal
one. If an item (or user) has only weak neighbors, the estichaeights may all be
very small. Fourth, the method automatically adjusts ferateons among items in
their means or variances.
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4.3.2 Computational issues

Efficient computation of an item-item neighborhood metheglires pre-computing
certain values associated with each item-item pair fordragdirieval. First, we need
a quick access to all item-item similarities, by pre-commpyitall s values, as ex-
plained in Subsection 4.1.

Second, we pre-compute all possible entrieA ahdb. To this end, for each two
itemsi and j, we compute

—  Yveu(ij) Lidvj
Aj=—"———
. U, j)l

Then, the aforementioned baseline vadwg, which is used in (26)-(27), is taken
as the average entry of the pre-computedn matrix A. In fact, we recommend
using two different baseline values, one by averaging thediagonal entries of
A and another one by averaging the generally-larger diagemiailes, which have
an inherently higher average because they sum only nortinegalues. Finally,
we derive a fulln x n matrix A from A by (26), using the appropriate value axfg
Here, the non-diagonal average is used when deriving thelizmonal entries oA,
whereas the diagonal average is used when deriving therthhgotries ofA.
Because of symmetry, it is sufficient to store the values joand/f\,- j only for
i > j. Our experience shows that it is enough to allocate one bytedich individual
value, so the overall space required fidtems is exactlyn(n+ 1) bytes.
Pre-computing all possible entries of matAxsaves the otherwise lengthy time
needed to construct entries on the fly. After quickly reiriguthe relevant entries
of A, we can compute the interpolation weights by solvingxak system of equa-
tions (28) using a standard linear solver. However, a madestase in prediction
accuracy was achieved when constrainngp be nonnegative through a quadratic
program [2]. Solving the system of equations is an overhe®d the basic neigh-
borhood method described in Subsection 4.2. For typicalegabfk (between 20
and 50), the extra time overhead is comparable to the timgeauefer computing the
k nearest neighbors, which is common to neighborhood-bgseehaches. Hence,
while the method relies on a much more detailed computatidheointerpolation
weights compared to previous methods, it does not signtficamcrease running
time; see [2].

4.4 Summary

Collaborative filtering through neighborhood-based intdgition is probably the
most popular way to create a recommender system. Three s@jgronents char-
acterize the neighborhood approach: (1) data normalizat®) neighbor selection,
and (3) determination of interpolation weights.



24 Yehuda Koren and Robert Bell

Normalization is essential to collaborative filtering imgeal, and in particular to
the more local neighborhood methods. Otherwise, even nopfesticated methods
are bound to fail, as they mix incompatible ratings pertairto different unnormal-
ized users or items. We described a suitable approach tondatazalization, based
around baseline predictors.

Neighborhood selection is another important componei.directly related to
the employed similarity measure. Here, we emphasized theritance of shrinking
unreliable similarities, in order to avoid detection of gtgbors with a low rating
support.

Finally, the success of neighborhood methods depends ochthiee of the in-
terpolation weights, which are used to estimate unknowngatfrom neighboring
known ones. Nevertheless, most known methods lack a rigaway to derive these
weights. We showed how the interpolation weights can be ctegpas a global
solution to an optimization problem that precisely reflébtsr role.

5 Enriching neighborhood models

Most neighborhood methods are local in their nature — canatng on only a small
subset of related ratings. This contrasts with matrix fazédion, which casts a very
wide net to try to characterize items and users. It appeatsattturacy can be im-
proved by employing this global viewpoint, which motivates methods of this sec-
tion. We suggest a new neighborhood model drawing on pilieipf both classical
neighborhood methods and matrix factorization modelse ldther neighborhood
models, the building stones here are item-item relationsa(ternatively, user-user
relations), which provide the system some practical achgad discussed earlier. At
the same time, much like matrix factorization, the modekistered around a global
optimization framework, which improves accuracy by coasidgg the many weak
signals existing in the data.

The main method, which is described in Subsection 5.1, allasvto enrich the
model with implicit feedback data. In addition, it facilits two new possibilities.
First is a factorized neighborhood model, as described bs&etion 5.2, bringing
great improvements in computational efficiency. Secondtisament of temporal
dynamics, leading to better prediction accuracy, as desdiin Subsection 5.3.

5.1 A global neighborhood model

In this subsection, we introduce a neighborhood model baseglobal optimiza-

tion. The model offers an improved prediction accuracy, tigring the aforemen-
tioned merits of the model described in Subsection 4.3, adttiitional advantages
that are summarized as follows:
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1. No reliance on arbitrary or heuristic item-item simileas. The new model is
cast as the solution to a global optimization problem.

2. Inherent overfitting prevention or “risk control”: the o reverts to robust
baseline predictors, unless a user entered sufficiently meevant ratings.

3. The model can capture the totality of weak signals encesgzhin all of a user’s
ratings, not needing to concentrate only on the few ratirgsfost similar
items.

4. The model naturally allows integrating different fornfsuser input, such as
explicit and implicit feedback.

5. A highly scalable implementation (Section 5.2) allowsehr time and space
complexity, thus facilitating both item-item and userduseplementations to
scale well to very large datasets.

6. Time drifting aspects of the data can be integrated irgantbdel, thereby im-
proving its accuracy; see Subsection 5.3.

5.1.1 Building the model

We gradually construct the various components of the maldedugh an ongoing
refinement of our formulations. Previous models were cedtaroundiser-specific
interpolation weights -8 in (19) or Sj/Zjesk(i;u)Si in (17) — relating itemi to
the items in a user-specific neighborhoddigy). In order to facilitate global op-
timization, we would like to abandon such user-specific Wwisdn favor of global
item-item weights independent of a specific user. The wdigt j to i is denoted
by wij and will be learned from the data through optimization. Aitiahsketch of
the model describes each ratingby the equation

fui=bui+ 3 (ruj—buj)wij. (29)
jeR(u)

This rule starts with the crude, yet robust, baseline ptedic;). Then, the
estimate is adjusted by summing owedrratings byu.

Let us consider the interpretation of the weights. Usu&lg/weights in a neigh-
borhood model represent interpolation coefficients negatinknown ratings to ex-
isting ones. Here, we adopt a different viewpoint, that éssh more flexible usage
of the weights. We no longer treat weights as interpolatimefficients. Instead, we
take weights as part of adjustmentspifsets added to the baseline predictors. This
way, the weightwij is the extent by which we increase our baseline predictiog;of
based on the observed valuergf. For two related itemsand j, we expeci;j to
be high. Thus, whenever a useratedj higher than expected(; — by; is high), we
would like to increase our estimate f@gs rating ofi by adding(ryj — byj)wij to the
baseline prediction. Likewise, our estimate will not dézimuch from the baseline
by an item] thatu rated just as expected,( — by; is around zero), or by an itefn
that is not known to be predictive orfw;; is close to zero).
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This viewpoint suggests several enhancements to (29}, Wiean use the form
of binary user input, which was found beneficial for factatian models. Namely,
analyzing which items were rated regardless of rating valoethis end, we add
another set of weights, and rewrite (29) as

fui=bui+ 3 [(ruj—buj)wij +cij]. (30)
jeR(u)

Similarly, one could employ here another set of implicitdeack, Nu)—e.qg.,
the set of items rented or purchased by the user—leading talihe

fii=bu+ Y (rgj—bupwj+ 3 Gj. (31)
jeR(u) JeN(u)

Much like thew;j’s, the ¢;j’s are offsets added to the baseline predictor. For two
itemsi and j, an implicit preference buy for j leads us to adjust our estimatergf
by cij, which is expected to be high jfis predictive ori.

Employing global weights, rather than user-specific imé&afion coefficients,
emphasizes the influence of missing ratings. In other waadsser’s opinion is
formed not only by what he rated, but also by what he did na.iebr example,
suppose that a movie ratings dataset shows that users théStaek 3” high also
gave high ratings to “Shrek 1-2". This will establish highigigs from “Shrek 1-2”
to “Shrek 3”. Now, if a user did not rate “Shrek 1-2" at all, Ipiedicted rating for
“Shrek 3" will be penalized, as some necessary weights déveadded to the sum.

For prior models (17) and (19) that interpolateg— by from {ryj — byj|j €
SX(i;u)}, it was necessary to maintain compatibility between hizevalues and
the byj values. However, here we do not use interpolation, so we eaauple the
definitions ofby; and byj. Accordingly, a more general prediction rule would be:
Fui = bui + Y jer) (fuj — buj)wij +cij. The constaniy; can represent predictions of
rui by other methods such as a latent factor model. Here, we stutigefollowing
rule that was found to work well:

fui:u—f—bu‘f'bi‘f' ruj bu] W|J+C|J] (32)
JER(u)

Importantly, thebyj’s remain constants, which are derived as explained in @ecti
2.1. However, thd,'s andb;’s become parameters that are optimized much like the
Wij’'s andci;’s

We have found that it is beneficial to normalize sums in the ehthding to the
form

fui = M+ by +bi +|R(u)| = [(ruj — buj)wij +cij] - (33)
jeR(u)

The constantr controls the extent of normalization. A non-normalizecer(d =
0), encourages greater deviations from baseline predgfior users that provided
many ratings (highR(u)|). On the other hand, a fully normalized rule, eliminates the
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effect of number of ratings on deviations from baseline jtézhs. In many cases it
would be a good practice for recommender systems to havéegeaviation from
baselines for users that rate a lot. This way, we take mokewith well modeled
users that provided much input. For such users we are witbngredict quirkier
and less common recommendations. At the same time, we areddsin about the
modeling of users that provided only a little input, in whichse we would like to
stay with safe estimates close to the baseline values. @eriexce with the Netflix
dataset shows that best results are achievedavith0.5, as in the prediction rule

Pui = 1+ Dby + by + [R(u)| 2 ; [(ruj — buj)Wij +Gij]. (34)
j€R(u)

As an optional refinement, complexity of the model can be cedwby pruning
parameters corresponding to unlikely item-item relatidret us denote by Si)
the set ofk items most similar ta, as determined by e.g., a similarity meassye
or a natural hierarchy associated with the item set. Adukitily, we use K(i; u) def
R(u) N'SX(i).2 Now, when predicting ;i according to (34), it is expected that the
most influential weights will be associated with items santbi. Hence, we replace
(34) with

Fui =1 + by + by + |R¥(i;u)| 2 > [(ruj —bupw 6. (35)
JERX(isu)

Whenk = o, rule (35) coincides with (34). However, for other valuekatf offers
the potential to significantly reduce the number of varialiolved.

5.1.2 Parameter Estimation

Prediction rule (35) allows fast online prediction. Morengautational work is

needed at a pre-processing stage where parameters aratedtii major design
goal of the new neighborhood model was facilitating an edfitiglobal optimiza-

tion procedure, which prior neighborhood models lackedisTimodel parameters
are learned by solving the regularized least squares proadsociated with (35):

2 Notational clarification: With other neighborhood modelwits beneficial to usekﬂ; u), which
denotes th& items most similar td among those rated hy Hence, ifu rated at least items, we
will always have|S*(i;u)| = k, regardless of how similar those items are.telowever,| RX(i; u)|

is typically smaller thark, as some of those items most similai iere not rated by.
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2
min (ruiﬂbubi|Rk(i;u)|_% Z ((rujbuj)Wij+Cij)>
JERX(i5u)

B Wi € (uper
—i—)\lo(bﬁ-‘rbiz-‘r ij+ci2j) (36)
JeRX(i;u)

An optimal solution of this convex problem can be obtainedldgst square
solvers, which are part of standard linear algebra pack&tsgever, we have found
that the following simple stochastic gradient descentesolvorks much faster. Let
us denote the prediction errag,; — fyi, by eyi. We loop through all known ratings
in ¢ . For a given training cask;j, we modify the parameters by moving in the
opposite direction of the gradient, yielding:

e by by+y-(eni—A-by)

o b < bj+y-(eu—A0-bi)

e VjeRK(i;u):
Wij <= Wij + Y- (|Rk(i;u)\*% 'aui'(ruj_buj)—/\lo'wij)
Cj < GjtVy (|Rk(i;u)|—% 'Qli_)\lo'cij>

The meta-parameteyqstep size) andig are determined by cross-validation. We
usedy = 0.005 andA;p = 0.002 for the Netflix data. Another important parameter
is k, which controls the neighborhood size. Our experience shbwat increasing
k always benefits the accuracy of the results on the test sate;¢he choice of
k should reflect a tradeoff between prediction accuracy angpctational cost. In
Subsection 5.2 we will describe a factored version of theehtitht eliminates this
tradeoff by allowing us to work with the most accurkte o while lowering running
time.

A typical number of iterations throughout the training diatd5—20. As for time
complexity per iteration, let us analyze the most accurase evherd = o, which
is equivalent to using prediction rule (34). For each usand itemi € R(u) we
need to modify{wi,cij|j € R(u)}. Thus the overall time complexity of the training
phase iO(3, [R(U)?).

5.1.3 Comparison of accuracy

Experimental results on the Netflix data with the globallyimized neighborhood
model, henceforth dubbed GlobalNgbr, are presented inr&igju\We studied the
model under different values of parameterThe solid black curve with square
symbols shows that accuracy monotonically improves wiingk values, as root
mean squared error (RMSE) falls from 0.9139 ko 250 to 0.9002 folk = co.
(Notice that since the Netflix data contains 17,770 mowes,» is equivalent to
k=17,769, where all item-item relations are explored.) Weatpd the experiments
without using the implicit feedback, that is, dropping the parameters from our
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model. The results depicted by the black curve with X’s shasigaificant decline
in estimation accuracy, which widens kgrows. This demonstrates the value of
incorporating implicit feedback into the model.

For comparison we provide the results of the two previouskctibed neighbor-
hood models. First is a similarity-based neighborhood rm{deSubsection 4.2),
which is the most popular CF method in the literature. We tketiois model as
CorNgbr. Second is the more accurate model described ineStiis 4.3, which
will be denoted as JointNgbr. For both these two models, igd to pick optimal
parameters and neighborhood sizes, which were 20 for Carldgh 50 for Joint-
Ngbr. The results are depicted by the dotted and dashed taszectively. Itis clear
that the popular CorNgbr method is noticeably less accutate the other neigh-
borhood models. On the opposite side, GlobalNgbr deliveseeraccurate results
even when compared with JointNgbr, as long as the vallkesét least 500. Notice
that thek value (thex-axis) is irrelevant to the previous models, as their défdr
notion of neighborhood makes neighborhood sizes incolmigatiet, we observed
that while the performance of GlobalNgbr keeps improvingrase neighbors are
added, this was not true with the two other models. For CorNgtal JointNgbr,
performance peaks with a relatively small number of neighlamd declines ther-
after. This may be explained by the fact that in GlobalNgbrameters are directly
learned from the data through a formal optimization procedhiat facilitates using
many more parameters effectively.

Finally, let us consider running time. Previous neighbordhmodels require very
light pre-processing, though, JointNgbr [2] requires Ba@\a small system of equa-
tions for each provided prediction. The new model does wre/gire-processing
where parameters are estimated. However, online prediianmediate by fol-
lowing rule (35). Pre-processing time grows with the valfi&k.oFigure 2 shows
typical running times per iteration on the Netflix data, assmeed on a single pro-
cessor 3.4GHz Pentium 4 PC.

5.2 A factorized neighborhood model

In the previous subsection we presented a more accuratbhwoelgpod model,
which is based on prediction rule (34) with training time goexity O(s, |R(u)|?)

and space complexit®(m-+n?). (Recall thaimis the number of users, amds the
number of items.) We could improve time and space compléxitgparsifying the
model through pruning unlikely item-item relations. Spigzation was controlled
by the parameték < n, which reduced running time and allowed space complexity
of O(m+ nk). However, ak gets lower, the accuracy of the model declines as well.
In addition, sparsification required relying on an exteriheds natural, similarity
measure, which we would have liked to avoid. Thus, we will rsivew how to re-
tain the accuracy of the full dense prediction rule (34),le/kignificantly lowering
time and space complexity.
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Fig. 1 Comparison of neighborhood-based models. Accuracy is measurdd$# Rn the Netflix
test set, so lower values indicate better performance. We medsui@turacy of the globally
optimized model (GlobalNgbr) with and without implicit feedika RMSE is shown as a function
of varying values ok, which dictates the neighborhood size. The accuracy of tlwerahodels is
shown as two horizontal lines; for each we picked an optimalhimichood size.
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Fig. 2 Running time per iteration of the globally optimized neighimsd model, as a function of
the parametek.



Advances in Collaborative Filtering 31

5.2.1 Factoring item-item relationships

We factor item-item relationships by associating each itemith three vectors:
g%,y € Rf. This way, we confinav;j to beq"x. Similarly, we impose the struc-
turecj = qiTyj. Essentially, these vectors strive to map items intd a@imensional
latent factor space where they are measured against vaispests that are revealed
automatically by learning from the data. By substitutinig thto (34) we get the fol-
lowing prediction rule:

Fui = + by + by + [R(u)[ 2

[(ruj — buj)aT xj +af yj] (37)
jeR(u)

Computational gains become more obvious by using the elguivaule
R _1
fui = M +by+bi+q <|R(u)| 2 Z (ruj — buj)X +y,—) . (38)
jeR(u)

Notice that the bulk of the ruIQR&(u)\*% ¥ ier) (Tuj — buj)xj +yj) depends only
onu while being independent of This leads to an efficient way to learn the model
parameters. As usual, we minimize the regularized squaredfanction associated
with (38)

2
. _1
o min % (ruiububiqiT<|R(U)l 2y (fujbuj)Xi+yj>>
(unex u)

jeR(

+A11<bﬁ+b?+||qi|2+ y ||x;||2+||yj||2> : (39)
IS()

Optimization is done by a stochastic gradient descent sehefrich is described
in the following pseudo code:



32 Yehuda Koren and Robert Bell

L earnFactorizedNeighbor hoodM odel (Known ratingsr;, rank: f)
% For each item i compute &, y; € R
% which form a neighborhood model
Const #terations= 20,y = 0.002 A = 0.04
% Gradient descent sweeps:
for count=1,..., #lterationsdo
foru=1,....mdo
% Compute the component independent of i:
Pu < IR(U)[~2 3 jerqw) (uj — buj)X; +;
sum« 0
for all i € R(u) do
Fui <= U +Dby+by +qiTpu
€ui ¢+ ui — Fui
% Accumulate information for gradient steps grnyx
SUM<— SUMH- & -
% Perform gradient step on dpy, bi:
O« di+y (eui-pu—A-o)
by < by+y- (eui—A-by)
b+ bi+y (e —A-by)
all'i € R(u) do
% Perform gradient step on:x
X X +y- (JRU)|7Z - (ry — byi) - SUM—A - )
% Perform gradient step on:y
yi ¢ Yi+y- (JR(U)| "2 -sum-A -y)
return {qi,x,yili=1,...,n}

fo

=

The time complexity of this model is linear with the inputesi@(f - 5, (|R(u)|)),
which is significantly better than the non-factorized mdtat required tim®(s , |[R(u)|?).
We measured the performance of the model on the Netflix da¢aTable 3. Accu-
racy is improved as we use more factors (increadihgHowever, going beyond
200 factors could barely improve performance, while slguianning time. Inter-
estingly, we have found that with>> 200 accuracy negligibly exceeds the best non-
factorized model (withk = ). In addition, the improved time complexity translates
into a big difference in wall-clock measured running timer Example, the time-
per-iteration for the non-factorized model (wkh= o) was close to 58 minutes. On
the other hand, a factorized model with= 200 could complete an iteration in 14
minutes without degrading accuracy at all.

The most important benefit of the factorized model is the ceduspace com-
plexity, which isO(m+nf) —linear in the input size. Previous neighborhood models
required storing all pairwise relations between itemsdileg to a quadratic space
complexity of O(m+ n?). For the Netflix dataset which contains 17,770 movies,
such quadratic space can still fit within core memory. Somamercial recom-
menders process a much higher number of items. For examplenlane movie
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rental service like Netflix is currently offering over 100@titles. Music down-
load shops offer even more titles. Such more comprehengsateras with data on
100,000s items eventually need to resort to external stoiragrder to fit the en-
tire set of pairwise relations. However, as the number ohgtés growing towards
millions, as in the Amazon item-item recommender systemgchvhccesses stored
similarity information for several million catalog item&(Q], designers must keep
a sparse version of the pairwise relations. To this end, wallyes relating an item
to its topk most similar neighbors are stored thereby reducing spaoglexity to
O(m+nk). However, a sparsification technique will inevitably detgaccuracy by
missing important relations, as demonstrated in the pusviection. In addition,
identification of the togk most similar items in such a high dimensional space is a
non-trivial task that can require considerable compunatiefforts. All these issues
do not exist in our factorized neighborhood model, whiclersffa linear time and
space complexity without trading off accuracy.

#factors 50 100 | 200 | 500
RMSE 0.9037/0.90130.90000.8998
time/iteration4.5 min 8 min |14 min[34 min|

Table 3 Performance of the factorized item-item neighborhood modet Models with> 200
factors slightly outperform the non-factorized model, wipiteviding much shorter running time.

The factorized neighborhood model resembles some latetdrfanodels. The
important distinction is that here we factorize the itepwit relationships, rather
than the ratings themselves. The results reported in Tadte 8omparable to those
of the widely used SVD model, but not as good as those of SVBee;Section 3.
Nonetheless, the factorized neighborhood model retamgprifictical advantages of
traditional neighborhood models discussed earlier—thktiabito explain recom-
mendations and to immediately reflect new ratings.

As a side remark, we would like to mention that the decisiams®three separate
sets of factors was intended to give us more flexibility. Baleon the Netflix data
this allowed achieving most accurate results. Howeverthemaeasonable choice
could be using a smaller set of vectors, e.g., by requiripg: % (implying sym-
metric weightswi; = w;;).

5.2.2 A user-user model

A user-user neighborhood model predicts ratings by consigiénow like-minded

users rated the same items. Such models can be implemensedtblging the roles
of users and items throughout our derivation of the itermiteodel. Here, we would
like to concentrate on a user-user model, which is dual tatém-item model of

(34). The major difference is replacing the; weights relating item pairs, with
weights relating user pairs:
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Fui = H+bu+bi+RO)72 S (ri— bui)Way (40)
VeR(i)
The set Ri) contains all the users who rated itenNotice that here we decided
to not account for implicit feedback. This is because addingh feedback was not
very beneficial for the user-user model when working withNetflix data.

User-user models can become useful in various situaticorse¥ample, some
recommenders may deal with items that are rapidly replabed,making item-item
relations very volatile. On the other hand, a stable usex baables establishment of
long term relationships between users. An example of suels@is a recommender
system for web articles or news items, which are rapidly gh@anby their nature;
see, e.g., [8]. In such cases, systems centered aroundiseserelations are more
appealing.

In addition, user-user approaches identify different kiod relations that item-
item approaches may fail to recognize, and thus can be useftgrtain occasions.
For example, suppose that we want to predijgt but none of the items rated by
useru is really relevant ta. In this case, an item-item approach will face obvious
difficulties. However, when employing a user-user perspectve may find a set
of users similar tai, who rated. The ratings of by these users would allow us to
improve prediction of ;.

The major disadvantage of user-user models is computéatiSirece typically
there are many more users than items, pre-computing andg@t user-user re-
lations, or even a reasonably sparsified version thereofigdy expensive or com-
pletely impractical. In addition to the high(n?) space complexity, the time com-
plexity for optimizing model (40) is also much higher thamitem-item counterpart,
being O(¥;|R(i)|?) (notice that/R(i)| is expected to be much higher thiR(u))).
These issues have rendered user-user models as a lessgbicatice.

A factorized model. All those computational differences disappear by factoriz
ing the user-user model along the same lines as in the im+hodel. Now, we
associate each usemwith two vectorspy,z, € Rf. We assume the user-user rela-
tions to be structured agy, = p| z. Let us substitute this into (40) to get

Fu = H+bu+ b+ RM[72 Y (ri—by)pl . (41)
VER(i)

Once again, an efficient computation is achieved by inclyithie terms that depends
oni but are independent afin a separate sum, so the prediction rule is presented
in the equivalent form

Fui = H+bu+bi+ LRI 72 Y (rvi—b)z. (42)
VeR(i)

In a parallel fashion to the item-item model, all parameteesiearned in linear time
O(f-3i|R(i)]). The space complexity is also linear with the input size H€in+

mf). This significantly lowers the complexity of the user-useyd®l compared to
previously known results. In fact, running time measuredhenNetflix data shows
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that now the user-user model is even faster than the item+it@del; see Table 4.
We should remark that unlike the item-item model, our impatation of the user-
user model did not account for implicit feedback, which @bly led to its shorter
running time. Accuracy of the user-user model is signifigahetter than that of
the widely-used correlation-based item-item model thhteaes RMSE=0.9406 as
reported in Figure 1. Furthermore, accuracy is slightlydyghan the variant of the
item-item model, which also did not account for implicit ¢eack (yellow curve in
Figure 1). This is quite surprising given the common wisdbat item-item methods
are more accurate than user-user ones. It appears that anpklmented user-user
model can match speed and accuracy of an item-item modeletawour item-
item model could significantly benefit by accounting for iijlfeedback.

#factors 50 100 | 200 | 500
RMSE 0.91190.9110 0.9101/0.9093
time/iteratior) 3 min| 5 min {8.5 min 18 min

Table4 Performance of the factorized user-user neighborhood model.

Fusing item-item and user-user models. Since item-item and user-user models
address different aspects of the data, overall accuracypiscéed to improve by
combining predictions of both models. Such an approach wasqusly suggested
and was shown to improve accuracy; see, e.g. [4, 32]. Howpest efforts were
based on blending the item-item and user-user predictiorisgla post-processing
stage, after each individual model was trained indepehdeitthe other model.
A more principled approach optimizes the two models sinmaltausly, letting them
know of each other while parameters are being learned. Thimghout the entire
training phase each model is aware of the capabilities obtiner model and strives
to complement it. Our approach, which states the neighlmatimodels as formal
optimization problems, allows doing that naturally. Weide\a model that sums the
item-item model (37) and the user-user model (41), leading t

Fu =i+ butbi +RWI 2 Y [(ruj — buj)a %+ ]
R(u

je
+IRMI72 Y (- bw)plz. (43)
VER(i)

Model parameters are learned by stochastic gradient desptmization of the
associated squared error function. Our experiments wighNgtflix data show that
prediction accuracy is indeed better than that of each iddal model. For example,
with 100 factors the obtained RMSE is 0.8966, while with 28€térs the obtained
RMSE is 0.8953.

Here we would like to comment that our approach allows iratigg the neigh-
borhood models also with completely different models inrailsir way. For ex-
ample, in [17] we showed an integrated model that combinedtéim-item model



36 Yehuda Koren and Robert Bell

with a latent factor model (SVD++), thereby achieving img@d prediction accu-
racy with RMSE below 0.887. Therefore, other possibilitigth potentially better
accuracy should be explored before considering the intiegraf item-item and
user-user models.

5.3 Temporal dynamics at neighborhood models

One of the advantages of the item-item model based on glptiatization (Subsec-
tion 5.1), is that it enables us to capture temporal dynamiesprincipled manner.
As we commented earlier, user preferences are drifting twes, and hence it is
important to introduce temporal aspects into CF models.

When adapting rule (34) to address temporal dynamics, twgooents should
be considered separately. First component; b; + by, corresponds to the base-
line predictor portion. Typically, this component expkaimost variability in the
observed signal. Second compon¢R(,u)|*% Y jerq) (ruj — buj)Wij + cij, captures
the more informative signal, which deals with user-itemeiattion. As for the
baseline part, nothing changes from the factor model, andrepéace it with
U+ bi(tyi) + by(tyi), according to (6) and (9). However, capturing temporal dyna
ics within the interaction part requires a different stggte

Item-item weights\;; andc;j) reflect inherent item characteristics and are not
expected to drift over time. The learning process shouldurepunbiased long term
values, without being too affected from drifting aspeatsided, the time changing
nature of the data can mask much of the longer term item-igationships if not
treated adequately. For instance, a user rating both itemd j high within a short
time period, is a good indicator for relating them, therebghing higher the value
of wij. On the other hand, if those two ratings are given five yeaestawhile
the user’s taste (if not her identity) could considerablarude, this provides less
evidence of any relation between the items. On top of thisyaad argue that those
considerations are pretty much user-dependent; someargarsre consistent than
others and allow relating their longer term actions.

Our goal here is to distill accurate values for the item-itegights, despite the
interfering temporal effects. First we need to paramegetiie decaying relations
between two items rated by user We adopt exponential decay formed by the
functione P2t wheref3, > 0 controls the user specific decay rate and should be
learned from the data. We also experimented with other dierays, like the more
computationally-friendly(1 + B,At) %, which resulted in about the same accuracy,
with an improved running time.

This leads to the prediction rule

Fui = 1+ by (tui) + bu(tui) + \R(U)\_% z e‘ﬁ“'“ui‘tui‘((ruj —byj)wij +cij). (44)
jeR(u
The involved parametersy(tii) = bi + b ging,), bu(tui) = by + ay - dew(tui) +

but,. Bus Wij andcj, are learned by minimizing the associated regularizedrsgua
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error

z (rui — M — b — by gingt,;) — bu — audevy(tui) — byg, —
(unex

2
1 .
|R(u)‘*z Z e*Bu-\tw tUJ((ruj_buj)Wij+Cij)) +
jER(u)
A12 (bi2+bfsin(tui) + b+ af +bgy +w? +Ci21'> : (45)

Minimization is performed by stochastic gradient desceve.run the process for
25 iterations, with1, = 0.002, and step size (learning rate) of 0.005. An exception
is the update of the exponeflt, where we are using a much smaller step size of
107, Training time complexity is the same as the original altdpon, which is:
O(Sy|R(u) ). One can tradeoff complexity with accuracy by sparsifying set of
item-item relations as explained in Subsection 5.1.

As in the factor case, properly considering temporal dyearmproves the ac-
curacy of the neighborhood model within the movie ratingtaset. The RMSE
decreases from 0.9002 [17] to 0.8885. To our best knowlethigejs significantly
better than previously known results by neighborhood nusthdo put this in
some perspective, this result is even better than thosetegpby using hybrid
approaches such as applying a neighborhood approach cluaksbf other algo-
rithms [2, 23, 31]. A lesson is that addressing temporal dyina in the data can
have a more significant impact on accuracy than designing@ immmplex learning
algorithms.

We would like to highlight an interesting point. Lebe a user whose preferences
are quickly drifting (3, is large). Hence, old ratings hwshould not be very influen-
tial on his status at the current tirheOne could be tempted to decay the weight of
u’s older ratings, leading to “instance weighting” througbast function like

e_Bu"t—tui‘ <rui _ I‘l _ bi _ bLBin(tui) _ bu _ audew(tui)f
(ui)er

Nl

2
bug — [R(W[7Z % ((ru,-—bu,-)wi,-+ci,-)) +Aza(-).

jeR(u)

Such a function is focused at tloeirrent state of the user (at timg, while de-
emphasizing past actions. We would argue against this ehaitd opt for equally
weighting the prediction error at all past ratings as in (4bgreby modelingll
past user behavior. Therefore, equal-weighting allowsousxploit the signal at
each of the past ratings, a signal that is extracted as tm-veights. Learning
those weights would equally benefit from all ratings by a ulseother words, we
can deduce that two items are related if users rated thentagiynivithin a short
time frame, even if this happened long ago.
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5.4 Summary

This section follows a less traditional neighborhood basedel, which unlike pre-
vious neighborhood methods is based on formally optimizingjobal cost func-
tion. The resulting model is no longer localized, consiagielationships between
a small set of strong neighbors, but rather considers alliblespairwise relations.
This leads to improved prediction accuracy, while maintejrsome merits of the
neighborhood approach such as explainability of predistiand ability to handle
new ratings (or new users) without re-training the model.

The formal optimization framework offers several new pbiisies. First, is a
factorized version of the neighborhood model, which impsits computational
complexity while retaining prediction accuracy. In pauter, it is free from the
quadratic storage requirements that limited past neidtdmat models.

Second addition is the incorporation of temporal dynamits ihe model. In or-
der to reveal accurate relations among items, a proposedIrieadns how influence
between two items rated by a user decays over time. Muchrikes matrix factor-
ization case, accounting for temporal effects results iigmaificant improvement in
predictive accuracy.

6 Between neighborhood and factorization

This chapter was structured around two different appraatheCF: factorization
and neighborhood. Each approach evolved from differenthainciples, which
led to distinct prediction rules. We also argued that fazation can lead to some-
what more accurate results, while neighborhood models rasg Bome practical
advantages. In this section we will show that despite thdf§ereinces, the two ap-
proaches share much in common. After all, they are bo#ar models

Let us consider the SVD model of Subsection 3.1, based on

fui = g Pu- (46)

For simplicity, we ignore here the baseline predictors dmé can easily reintroduce
them or just assume that they were subtracted from all mtib@n earlier stage.

We arrange all item-factors within thex f matrix Q = 010z ..qn|". Similarly,
we arrange all user-factors within thex f matrix P = [p1pz... pm]T. We use the
ny x f matrix Q[u] to denote the restriction d to the items rated by, where
nu = |R(u)|. Let the vector, € R™ contain the ratings given by ordered as in
Qlu]. Now, by activating (46) on all ratings given hy we can reformulate it in a
matrix form

fu=Q[ulpy (47)

For Qu] fixed, ||ry — Q[u] pul|2 is minimized by

pu = (Q[u]" Q[u]) ' Q[u]ry
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In practice, we will regularize witih > 0 to get

Pu= (Q[UITQIU] + A1) *QIU Try.
By substitutingpy in (47) we get

Fu = Q[u](Q[u]" Q[u] + A1) ' Q[u]ry. (48)

This expression can be simplified by introducing some newtimt. Let us de-
note thef x f matrix (Q[u]TQ[u] +A1)~t asWY, which should be considered as a
weighting matrix associated with user Accordingly, the weighted similarity be-
tween items and j from u’s viewpoint is denoted bg; = f WUg;. Using this new
notation and (48) the predicted preferencel &dr itemi by SVD is rewritten as

fui: z s,“jruj. (49)

jeR(u)

We reduced the SVD model into a linear model that predictiepeaces as a linear
function of past actions, weighted by item-item similariach past action receives
a separate term in forming the prediction. This is equivalent to an item-item
neighborhood model. Quite surprisingly, we transformeal rimatrix factorization
model into an item-item model, which is characterized by:

e Interpolation is made frorall past user ratings, not only from those associated
with items most similar to the current one.

e The weight relating itemband j is factorized as a product of two vectors, one
related ta and the other tq.

e Item-item weights are subject to a user-specific normatinathrough the ma-
trix WY,

Those properties support our findings on how to best cortst&ruteighborhood
model. First, we showed in Subsection 5.1 that best resquitsdighborhood mod-
els are achieved when the neighborhood size (controlledobgtantk) is maxi-
mal, such that all past user ratings are considered. Seaoi8lbsection 5.2 we
touted the practice of factoring item-item weights. As toe user-specific normal-
ization, we used a simpler normalizeg;®®. It is likely that SVD suggests a more
fundamental normalization by the matki¥“, which would work better. However,
computingV" would be expensive in practice. Another difference betwmersug-
gested item-item model and the one implied by SVD is that wiseho work with
asymmetric weightsajj # w;ji), whereas in the SVD-induced rulg; = s;;.

In the derivation above we showed how SVD induces an equitdtem-item
technique. In a fully analogous way, it can induce an eqaivaliser-user technique,
by expressingy as a function of the ratings and user factors. This bringsous t
three equivalent models: SVD, item-item and user-useroBeyinking SVD with
neighborhood models, this also shows that user-user andtiéen approaches, once
well designed, are equivalent.



40 Yehuda Koren and Robert Bell

This last relation (between user-user and item-item ames) can also be ap-
proached intuitively. Neighborhood models try to relaterago new items by fol-
lowing chains of user-item adjacencies. Such adjacenej@®sent preference- or
rating-relations between the respective users and itewith Bser-user and item-
item models act by following exactly the same chains. Thely differ in which
“shortcuts” are exploited to speed up calculations. Fomg{a, recommending
itemB to userl would follow the chain userl-itemA—use@siB (userl rated
itemA, which was also rated by user2, who rated itemB). A wser model fol-
lows such a chain with pre-computed user-user similarifiégnis way, it creates a
“shortcut” that bypasses the sub-chain userl-itemB—usepfacing it with a sim-
ilarity value between userl and user2. Analogously, an-item approach follows
exactly the same chain, but creates an alternative “shtrteplacing the sub-chain
itemA—user2—-itemB with an itemA—itemB similarity value.

Another lesson here is that the distinction that deems beigiood models as
“memory based”, while taking matrix factorization and tilee$ as “model based”
is not always appropriate, at least not when using accurgghborhood models
that are model-based as much as SVD. In fact, the other insistalso true. The
better matrix factorization models, such as SVD++, are &dowing memory-
based habits, as they sum over all memory stored ratings dbiery the online
prediction; see rule (3). Hence, the traditional sepanabetween “memory based”
and “model based” techniques is not appropriate for caiziggrthe techniques
surveyed in this chapter.

So far, we concentrated on relations between neighborhamteism and matrix
factorization models. However, in practice it may be beidfio break these rela-
tions, and to augment factorization models with sufficiedifferent neighborhood
models that are able to complement them. Such a combinatiotead to improved
prediction accuracy [3, 17]. A key to achieve this is by usihg more localized
neighborhood models (those of Section 4, rather than thidSeation 5), where the
number of considered neighbors is limited. The limited nendf neighbors might
not be the best way to construct a standalone neighborhodeélimaut it makes the
neighborhood model different enough from the factorizativzodel in order to add
a local perspective that the rather global factorizatiomlehonisses.
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