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Introduction

Three general approaches to statistics:

I frequentist (Neyman-Pearson, hypothesis testing)

I likelihood (what we’ve been learning all semester)

I Bayesian

Today’s goal: Contrast {frequentist, likelihood} with Bayesian,
with emphasis on Bayesian versus likelihood.

We’ll go over some of the Bayesian critiques of non-Bayesian
analysis and non-Bayesian critiques of Bayesian analysis.



Probability

Objective view of probability (non-Bayesian):

I The relative frequency of an outcome of an experiment over
repeated runs of the experiment.

I The observed proportion in a population.

Subjective view of probability (Bayesian):

I Individual’s degree of belief in a statement

I Defined personally (how much money would you wager on an
outcome?)

I Can be influenced in many ways (personal beliefs, prior
evidence)

Bayesian statistics is convenient because it does not require
repeated sampling or large n assumptions.



Maximum Likelihood

p(θ|y) =
p(y |θ)p(θ)

p(y)

= p(y |θ)k(y)

∝ p(y |θ)

L(θ|y) = p(y |θ)

There is a fixed, true value of θ, and we maximize the likelihood to
estimate θ and make assumptions to generate uncertainty about
our estimate of θ.



Bayesian

p(θ|y) =
p(y |θ)p(θ)

p(y)

∝ p(y |θ)p(θ)

I θ is a random variable.
I θ is stochastic and changes from time to time.
I θ is truly fixed, but we want to reflect our uncertainty about it.

I We have a prior subjective belief about θ, which we update
with the data to form posterior beliefs about θ.

I The posterior is a probability distribution that must integrate
to 1.

I The prior is usually a probability distribution that integrates to
1 (proper prior).



θ as Fixed versus as a Random Variable

Non-Bayesian approach (θ fixed):

I Estimate θ with measures of uncertainty (SE, CIs)
I 95% Confidence Interval: 95% of the time, θ is in the 95%

interval that is estimated each time.
I P(θ ∈ 95% CI) = 0 or 1

I P(θ > 2) = 0 or 1

Bayesian approach (θ random):

I Find the posterior distribution of θ.

I Take quantities of interest from the distribution (posterior
mean, posterior SD, posterior credible intervals)

I We can make probability statements regarding θ.
I 95% Credible Interval: P(θ ∈ 95% CI) = 0.95
I P(θ > 2) = (0, 1)



Critiques

Posterior = Evidence× Prior

NB: Bayesians introduce priors that are not justifiable.
B: Non-Bayesians are just doing Bayesian statistics with uninformative priors,
which may be equally unjustifiable.

NB: Unjustified Bayesian priors are driving the results.
B: Bayesian results ≈ non-Bayesian results as n gets larger (the data
overwhelm the prior).

NB: Bayesian is too hard. Why use it?
B: Bayesian methods allow us to easily estimate models that are too hard to

estimate (cannot computationally find the MLE) or unidentified (no unique

MLE exists) with non-Bayesian methods. Bayesian methods also allow us to

incorporate prior/qualitative information into the model.
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Running a Model

Non-Bayesian:

1. Specify a probability model
(distribution for Y ).

2. Find MLE θ̂ and measures
of uncertainty (SE, CI).
Assume θ̂ follows a
(multivariate) normal
distribution.

3. Estimate quantities of
interest analytically or via
simulation.

Bayesian:

1. Specify a probability model
(distribution for Y and
priors on θ).

2. Solve for posterior and
summarize it (mean, SD,
credible interval, etc.). We
can do both analytically or
via simulation.

3. Estimate quantities of
interest analytically or via
simulation.

There is a Bayesian way to do any non-Bayesian parametric model.



A Simple (Beta-Binomial) Model

The Los Angeles Lakers play 82 games during a regular NBA
season. In the 2008-2009 season, they won 65 games. Suppose the
Lakers win each game with probability π. Estimate π.

We have 82 Bernoulli observations or one observation Y , where

Y ∼ Binomial(n, π)

with n = 82.

Assumptions:

I Each game is a Bernoulli trial.

I The Lakers have the same probability of winning each game.

I The outcomes of the games are independent.



We can use the beta distribution as a prior for π since it has
support over [0,1].

p(π|y) ∝ p(y |π)p(π)

= Binomial(n, π)× Beta(α, β)

=

 
n

y

!
πy (1− π)(n−y) Γ(α + β)

Γ(α)Γ(β)
π(α−1)(1− π)(β−1)

∝ πy (1− π)(n−y)π(α−1)(1− π)(β−1)

p(π|y) ∝ πy+α−1(1− π)n−y+β−1

The posterior distribution is simply a Beta(y + α, n − y + β)
distribution. Effectively, our prior is just adding α− 1 successes
and β − 1 failures to the dataset.

Bayesian priors are just adding pseudo observations to the data.



Since we know the posterior is a Beta(y + α, n − y + β)
distribution, we can summarize it analytically or via simulation with
the following quantities:

I posterior mean

I posterior standard deviation

I posterior credible intervals (credible sets)

I highest posterior density region



0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Uninformative Beta(1,1) Prior

ππ

Prior
Data (MLE)
Posterior

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Beta(2,12) Prior

ππ

Prior
Data (MLE)
Posterior

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Uninformative Beta(1,1) Prior (n=1000)

ππ

Prior
Data (MLE)
Posterior

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Beta(2,12) Prior (n=1000)

ππ

Prior
Data (MLE)
Posterior



In the previous model, we had

Beta(y + α, n − y + β) =
Binomial(n, π)× Beta(α, β)

p(y)

We knew that the likelihood × prior produced something that
looked like a Beta distribution up to a constant of proportionality.

Since the posterior must be a probability distribution, we know
that it is a Beta distribution and we can easily solve for the
normalizing constant (although we don’t need to since we already
have the posterior).

When the posterior is the same distribution family as the prior, we
have conjugacy.

Conjugate models are great because we can find the exact
posterior, but we almost never have conjugacy except in very
simple models.



What Happens When We Don’t Have Conjugacy?

Consider a Poisson regression model with Normal priors on β.

p(β|y) ∝
nY

i=1

Poisson(λi )×Normal(µ,Σ)

λi = exp(xiβ)

p(β|y) ∝
nY

i=1

exp(−exiβ) exp(xiβ)yi

yi !
×

1

(2π)d/2|Σ|1/2
exp

„
1

2
(β − µ)TΣ−1(β − µ)

«

Likelihood × prior doesn’t look like any distribution we know
(non-conjugacy) and normalizing constant is too hard to find, so
how do we find our posterior?



MCMC to the Rescue

Ideal Goal: Produce independent draws from our posterior
distribution via simulation and summarize the posterior by using
those draws.

Markov Chain Monte Carlo (MCMC): a class of algorithms that
produce a chain of simulated draws from a distribution where each
draw is dependent on the previous draw.

Theory: If our chain satisfies some basic conditions, then the chain
will eventually converge to a stationary distribution (in our case,
the posterior) and we have approximate draws from the posterior.

But there is no way to know for sure whether our chain has
converged.



Algorithm 1: Gibbs Sampler

Let θt = (θt
1, . . . , θ

t
k) be the tth draw of our parameter vector θ.

Draw a new vector θt+1 from the following distributions:

θt+1
1 ∼ p(θ1|θt

2, . . . , θ
t
k , y)

θt+1
2 ∼ p(θ2|θt+1

1 , . . . , θt
k , y)

...

θt+1
k ∼ p(θk |θt+1

1 , . . . , θt+1
k−1, y)

Repeat m times to get m draws of our parameters from the
approximate posterior (assuming convergence).

Requires that we know the conditional distributions for each θ.
What if we don’t?



Algorithm 2: Metropolis-Hastings

Draw a new vector θt+1 in the following way:

1. Specify a jumping distribution Jt+1(θ
∗|θt) (usually a

symmetric distribution such as the multivariate normal).

2. Draw a proposed parameter vector θ∗ from the jumping
distribution.

3. Accept θ∗ as θt+1 with probability min(r,1), where

r =
p(y|θ∗)p(θ∗)

p(y|θt)p(θt)

If θ∗ is rejected, then θt+1 = θt .

Repeat m times to get m draws of our parameters from the
approximate posterior (assuming convergence).

M-H always works, but can be very slow.
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Missing Data

Suppose we have missing data. Define D as our data matrix and
M as our missingness matrix.

D =



y x1 x2 x3

1 2.5 432 0
5 3.2 543 1
2 ? 219 ?
? 1.9 ? 1
? 1.2 108 0
? 7.7 95 1


M =



y x1 x2 x3

1 1 1 1
1 1 1 1
1 0 1 0
0 1 0 1
0 1 1 1
0 1 1 1



One non-Bayesian approach to dealing with missing data is
multiple imputation.



Multiple Imputation

We need a method for filling in the missing cells of D as a first
step before we go to the analysis stage.

1. Assume a joint distribution for Dobs and M:

p(Dobs ,M|φ, γ) =

∫
p(D|φ)p(M|Dobs ,Dmis , γ)dDmis

If we assume MAR, then

p(Dobs ,M|φ, γ) ∝
∫

p(D|φ)dDmis



2. Find φ, which characterizes the full D.

L(φ|Dobs) =
n∏

i=1

∫
p(Di ,obs |φ)dDmis

How do we do this integral?

Assume Normality since the marginals of a multivariate
Normal are Normal.

L(µ,Σ|Dobs) =
n∏

i=1

N(Di ,obs |µobs ,Σobs)

3. Find µ̂, Σ̂ and its distribution via EM algorithm and
bootstrapping.

4. Draw m µ,Σ values, then use them to predict values for Dmis .



What we end up with is m datasets with missing values imputed.

We then run our regular analyses on the m datasets and combine
the results using Rubin’s rule.



Bayesian Approach to Missing Data

Bayesian paradigm: Everything unobserved is a random variable.

So we can set up the missing data as a“parameter” that we need
to find.

p(Dmis , φ, γ|Dobs ,M) ∝ p(Dobs |Dmis , φ)p(Dmis |φ)p(M|Dobs ,Dmis , γ)

p(γ)p(φ)

If we assume MAR:

p(Dmis , φ, γ|Dobs ,M) ∝ p(Dobs |Dmis , φ)p(Dmis |φ)p(φ)

Use Gibbs Sampling or M-H to sample both Dmis and φ.

We don’t have to assume normality of D to integrate over Dmis .
We can just drop the draws of Dmis .



We can also incorporate both imputation and analyses in the same
model.

p(θ,Dmis , φ, γ|Dobs ,M) ∝ p(yobs , ymis |θ)p(Dobs |Dmis , φ)p(Dmis |φ)

p(φ)p(θ)

Again, find the posterior via Gibbs Sampling or M-H.

Moral: We can easily set up an application specific Bayesian model
to incorporate missing data.



Multilevel Data

Suppose we have data in which we have i = 1, . . . , n observations
that belong to one of j = 1, . . . , J groups.

Examples:

I students within schools

I multiple observations per country

I districts within states

We can have covariates on multiple levels. How do we deal with
this type of data?



The Fixed Effects Model

We can let the intercept α vary by group:

yi = αj[i ] + xi1β1 + xi2β2 + εi

This is known as the fixed effects model.

This is equivalent to estimating dummy variables for J − 1 groups.

We can use this model if we think that there is something inherent
about the groups that affects our dependent variable.

However, the fixed effects model involves estimating many
parameters, and also cannot take into account group-level
covariates.



Hierarchical Model

A more flexible alternative is to use a hierarchical model, also
known as a multilevel model, mixed effects model, or random
effects model.

yi = αj[i ] + xi1β1 + xi2β2 + εi

αj ∼ N(α, σ2
α)

Instead of assuming a completely different intercept for each
group, we can assume that the intercepts are drawn from a
common (Normal) distribution.



We can incorporate group-level covariates in the following way:

yi = αj[i ] + xi1β1 + xi2β2 + εi

αj ∼ N(γ0 + uj1γ1, σ
2
α)

or equivalently

yi = αj[i ] + xi1β1 + xi2β2 + εi

αj = γ0 + uj1γ1 + ηj

ηj ∼ N(0, σ2
α)

This is a relatively difficult model to estimate using non-Bayesian
methods. The lme4() package in R can do it.



Bayesian Hierarchical Model

yi = αj[i ] + xi1β1 + xi2β2 + εi

αj ∼ N(γ0 + uj1γ1, σ
2
α)

We can do hierarchical models easily using Bayesian methods.

p(α,β,γ|y) ∝ p(y|α,β,γ)p(α|γ)p(γ)p(β)

Solve for the joint posterior using Gibbs Sampling or M-H.

We incorporate data with more than two levels easily as well.



Conclusion

There are pros and cons to using Bayesian statistics.

Pros:
I Incorporate outside/prior

knowledge
I Estimate much more

difficult models
I CI have more intuitive

meaning
I Helps with unidentified

models

Cons:

I It’s hard(er)

I Computationally intensive

I Need defense of priors

I No guarantee of MCMC
convergence

Statistical packages for Bayesian are also less developed
(MCMCpack() in R, WinBUGS, JAGS).


	Introduction
	Bayesian Models
	Applications
	Missing Data
	Hierarchical Models


